Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(11): 4481-4498, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38805379

RESUMO

We introduce the lambda-Adaptive Biasing Force (lambda-ABF) method for the computation of alchemical free-energy differences. We propose a software implementation and showcase it on biomolecular systems. The method arises from coupling multiple-walker adaptive biasing force with λ-dynamics. The sampling of the alchemical variable is continuous and converges toward a uniform distribution, making manual optimization of the λ schedule unnecessary. Contrary to most other approaches, alchemical free-energy estimates are obtained immediately without any postprocessing. Free diffusion of λ improves orthogonal relaxation compared to fixed-λ thermodynamic integration or free-energy perturbation. Furthermore, multiple walkers provide generic orthogonal space coverage with minimal user input and negligible computational overhead. We show that our high-performance implementations coupling the Colvars library with NAMD and Tinker-HP can address real-world cases including ligand-receptor binding with both fixed-charge and polarizable models, with a demonstrably richer sampling than fixed-λ methods. The implementation is fully open-source, publicly available, and readily usable by practitioners of current alchemical methods. Thanks to the portable Colvars library, lambda-ABF presents a unified user interface regardless of the back-end (NAMD, Tinker-HP, or any software to be interfaced in the future), sparing users the effort of learning multiple interfaces. Finally, the Colvars Dashboard extension of the visual molecular dynamics (VMD) software provides an interactive monitoring and diagnostic tool for lambda-ABF simulations.

2.
J Chem Phys ; 156(24): 244105, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778101

RESUMO

Generalized Langevin equations with non-linear forces and position-dependent linear friction memory kernels, such as commonly used to describe the effective dynamics of coarse-grained variables in molecular dynamics, are rigorously derived within the Mori-Zwanzig formalism. A fluctuation-dissipation theorem relating the properties of the noise to the memory kernel is shown. The derivation also yields Volterra-type equations for the kernel, which can be used for a numerical parametrization of the model from all-atom simulations.

3.
Proc Natl Acad Sci U S A ; 119(13): e2117586119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35320038

RESUMO

SignificanceThe analysis of complex systems with many degrees of freedom generally involves the definition of low-dimensional collective variables more amenable to physical understanding. Their dynamics can be modeled by generalized Langevin equations, whose coefficients have to be estimated from simulations of the initial high-dimensional system. These equations feature a memory kernel describing the mutual influence of the low-dimensional variables and their environment. We introduce and implement an approach where the generalized Langevin equation is designed to maximize the statistical likelihood of the observed data. This provides an efficient way to generate reduced models to study dynamical properties of complex processes such as chemical reactions in solution, conformational changes in biomolecules, or phase transitions in condensed matter systems.


Assuntos
Simulação de Dinâmica Molecular , Funções Verossimilhança
4.
J Chem Theory Comput ; 18(2): 968-977, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35080892

RESUMO

We introduce a novel multilevel enhanced sampling strategy grounded on Gaussian-accelerated Molecular Dynamics (GaMD). First, we propose a GaMD multi-GPUs-accelerated implementation within the Tinker-HP molecular dynamics package. We introduce the new "dual-water" mode and its use with the flexible AMOEBA polarizable force field. By adding harmonic boosts to the water stretching and bonding terms, it accelerates the solvent-solute interactions while enabling speedups, thanks to the use of fast multiple-time step integrators. To further reduce the time-to-solution, we couple GaMD to Umbrella Sampling (US). The GaMD─US/dual-water approach is tested on the 1D Potential of Mean Force (PMF) of the solvated CD2-CD58 system (168 000 atoms), allowing the AMOEBA PMF to converge within 1 kcal/mol of the experimental value. Finally, Adaptive Sampling (AS) is added, enabling AS-GaMD capabilities but also the introduction of the new Adaptive Sampling-US-GaMD (ASUS-GaMD) scheme. The highly parallel ASUS-GaMD setup decreases time to convergence by, respectively, 10 and 20 times, compared to GaMD-US and US. Overall, beside the acceleration of PMF computations, Tinker-HP now allows for the simultaneous use of Adaptive Sampling and GaMD-"dual water" enhanced sampling approaches increasing the applicability of polarizable force fields to large-scale simulations of biological systems.


Assuntos
Simulação de Dinâmica Molecular , Água , Solventes , Termodinâmica
5.
Chem Sci ; 12(13): 4889-4907, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34168762

RESUMO

We provide an unsupervised adaptive sampling strategy capable of producing µs-timescale molecular dynamics (MD) simulations of large biosystems using many-body polarizable force fields (PFFs). The global exploration problem is decomposed into a set of separate MD trajectories that can be restarted within a selective process to achieve sufficient phase-space sampling. Accurate statistical properties can be obtained through reweighting. Within this highly parallel setup, the Tinker-HP package can be powered by an arbitrary large number of GPUs on supercomputers, reducing exploration time from years to days. This approach is used to tackle the urgent modeling problem of the SARS-CoV-2 Main Protease (Mpro) producing more than 38 µs of all-atom simulations of its apo (ligand-free) dimer using the high-resolution AMOEBA PFF. The first 15.14 µs simulation (physiological pH) is compared to available non-PFF long-timescale simulation data. A detailed clustering analysis exhibits striking differences between FFs, with AMOEBA showing a richer conformational space. Focusing on key structural markers related to the oxyanion hole stability, we observe an asymmetry between protomers. One of them appears less structured resembling the experimentally inactive monomer for which a 6 µs simulation was performed as a basis for comparison. Results highlight the plasticity of the Mpro active site. The C-terminal end of its less structured protomer is shown to oscillate between several states, being able to interact with the other protomer, potentially modulating its activity. Active and distal site volumes are found to be larger in the most active protomer within our AMOEBA simulations compared to non-PFFs as additional cryptic pockets are uncovered. A second 17 µs AMOEBA simulation is performed with protonated His172 residues mimicking lower pH. Data show the protonation impact on the destructuring of the oxyanion loop. We finally analyze the solvation patterns around key histidine residues. The confined AMOEBA polarizable water molecules are able to explore a wide range of dipole moments, going beyond bulk values, leading to a water molecule count consistent with experimental data. Results suggest that the use of PFFs could be critical in drug discovery to accurately model the complexity of the molecular interactions structuring Mpro.

6.
J Chem Phys ; 153(2): 024101, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668932

RESUMO

We propose a new route to accelerate molecular dynamics through the use of velocity jump processes allowing for an adaptive time step specific to each atom-atom pair (two-body) interactions. We start by introducing the formalism of the new velocity jump molecular dynamics, ergodic with respect to the canonical measure. We then introduce the new BOUNCE integrator that allows for long-range forces to be evaluated at random and optimal time steps, leading to strong savings in direct space. The accuracy and computational performances of a first BOUNCE implementation dedicated to classical (non-polarizable) force fields are tested in the cases of pure direct-space droplet-like simulations and of periodic boundary conditions (PBC) simulations using Smooth Particle Mesh Ewald method. An analysis of the capability of BOUNCE to reproduce several condensed-phase properties is provided. Since electrostatics and van der Waals two-body contributions are evaluated much less often than with standard integrators using a 1 fs time step, up to a 400% direct-space acceleration is observed. Applying the reversible reference system propagator algorithms [RESPA(1)] to reciprocal-space (many-body) interactions allows BOUNCE-RESPA(1) to maintain large speedups in PBC while maintaining precision. Overall, we show that replacing the BAOAB standard Langevin integrator by the BOUNCE adaptive framework preserves a similar accuracy and leads to significant computational savings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...