Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18825, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914773

RESUMO

Modeling the subsistence strategies of prehistoric groups depends on the accuracy of the faunal identifications that provide the basis for these models. However, our knowledge remains limited about the reproducibility of published taxonomic identifications and how they accurately reflect the range of species deposited in the archaeological record. This study compares taxonomic identifications at three Paleolithic sites (Saint-Césaire and Le Piage in France, Crvena Stijena in Montenegro) characterized by high levels of fragmentation. Identifications at these sites were derived using two methods: morphological identification and collagen fingerprinting, the latter a peptide-based approach known as ZooMS. Using a double-blind experimental design, we show that the two methods give taxonomic profiles that are statistically indistinguishable at all three sites. However, rare species and parts difficult to identify such as ribs seem more frequently associated with errors of identification. Comparisons with the indeterminate fraction indicate that large game is over-represented in the ZooMS sample at two of the three sites. These differences possibly signal differential fragmentation of elements from large species. Collagen fingerprinting can produce critical insights on the range distribution of animal prey in the past while also contributing to improved models of taphonomic processes and subsistence behavior.


Assuntos
Arqueologia , Colágeno , Animais , Reprodutibilidade dos Testes , Peptídeos , Projetos de Pesquisa
2.
PLoS One ; 17(4): e0266362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35390045

RESUMO

Investigations of organic lithic micro-residues have, over the last decade, shifted from entirely morphological observations using visible-light microscopy to compositional ones using scanning electron microscopy and Fourier-transform infrared microspectroscopy, providing a seemingly objective chemical basis for residue identifications. Contamination, though, remains a problem that can affect these results. Modern contaminants, accumulated during the post-excavation lives of artifacts, are pervasive, subtle, and even "invisible" (unlisted ingredients in common lab products). Ancient contamination is a second issue. The aim of residue analysis is to recognize residues related to use, but other types of residues can also accumulate on artifacts. Caves are subject to various taphonomic forces and organic inputs, and use-related residues can degrade into secondary compounds. This organic "background noise" must be taken into consideration. Here we show that residue contamination is more pervasive than is often appreciated, as revealed by our studies of Middle Palaeolithic artifacts from two sites: Lusakert Cave 1 in Armenia and Crvena Stijena in Montenegro. First, we explain how artifacts from Lusakert Cave 1, despite being handled following specialized protocols, were tainted by a modern-day contaminant from an unanticipated source: a release agent used inside the zip-top bags that are ubiquitous in the field and lab. Second, we document that, when non-artifact "controls" are studied alongside artifacts from Crvena Stijena, comparisons reveal that organic residues are adhered to both, indicating that they are prevalent throughout the sediments and not necessarily related to use. We provide suggestions for reducing contamination and increasing the reliability of residue studies. Ultimately, we propose that archaeologists working in the field of residue studies must start with the null hypothesis that miniscule organic residues reflect contamination, either ancient or modern, and systematically proceed to rule out all possible contaminants before interpreting them as evidence of an artifact's use in the distant past.


Assuntos
Arqueologia , Cavernas , Arqueologia/métodos , Armênia , Montenegro , Reprodutibilidade dos Testes
3.
Archaeol Anthropol Sci ; 13(1): 13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456618

RESUMO

Burned or charred organic matter in anthropogenic combustion features may provide important clues about past human activities related to fire. To interpret archaeological hearths, a correct identification of the organic source material is key. In the present work, Raman spectroscopy is applied to characterise the structural properties of char produced in laboratory heating- and open-fire experiments. This reference data set is compared to analyses of three different archaeological sites with Middle Palaeolithic combustion contexts. The results show that it is possible to determine whether a charred fragment is the product of burning animal-derived matter (e.g. meat) or plant-derived matter (e.g. wood) by plotting a few Raman spectral parameters (i.e. position of G and D bands, and intensity ratios H D/H G and H V/H G) against one another. The most effective parameters for discriminating animal- from plant-derived matter are the position of the G band and the H V/H G intensity ratio. This method can be applied on raw sample material and on uncovered micromorphological thin sections. The latter greatly compliments micromorphology by providing information about char fragments without any clear morphological characteristics. This study is the first of its kind and may provide archaeologists with a robust new method to distinguish animal- from plant-derived char in thin sections. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12520-020-01263-3.

4.
Sci Rep ; 10(1): 20574, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239666

RESUMO

Characterizing organic matter preserved in archaeological sediment is crucial to behavioral and paleoenvironmental investigations. This task becomes particularly challenging when considering microstratigraphic complexity. Most of the current analytical methods rely on loose sediment samples lacking spatial and temporal resolution at a microstratigraphic scale, adding uncertainty to the results. Here, we explore the potential of targeted molecular and isotopic biomarker analysis on polyester resin-impregnated sediment slabs from archaeological micromorphology, a technique that provides microstratigraphic control. We performed gas chromatography-mass spectrometry (GC-MS) and gas chromatography-isotope ratio mass spectromety (GC-IRMS) analyses on a set of samples including drill dust from resin-impregnated experimental and archaeological samples, loose samples from the same locations and resin control samples to assess the degree of interference of polyester resin in the GC-MS and Carbon-IRMS signals of different lipid fractions (n-alkanes, aromatics, n-ketones, alcohols, fatty acids and other high polarity lipids). The results show that biomarkers within the n-alkane, aromatic, n-ketone, and alcohol fractions can be identified. Further work is needed to expand the range of identifiable lipid biomarkers. This study represents the first micro-contextual approach to archaeological lipid biomarkers and contributes to the advance of archaeological science by adding a new method to obtain behavioral or paleoenvironmental proxies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...