Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 141(8): 1437-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628634

RESUMO

Mice fed a mixture of CLA containing t10,c12-CLA lose fat mass and develop hyperinsulinemia and hepatic steatosis due to an accumulation of TG and cholesterol. Because cholesterol is the precursor in bile acid (BA) synthesis, we investigated whether t10,c12-CLA alters BA metabolism. In Expt. 1, female C57Bl/6J mice were fed a standard diet for 28 d supplemented with a CLA mixture (1 g/100 g) or not (controls). In Expt. 2, the feeding period was reduced to 4, 6, and 10 d. In Expt. 3, mice were fed a diet supplemented with linoleic acid, c9,t11-CLA, or t10,c12-CLA (0.4 g/100 g) for 28 d. In Expt. 1, the BA pool size was greater in CLA-fed mice than in controls and the entero-hepatic circulation of BA was altered due to greater BA synthesis and ileal reclamation. This resulted from higher hepatic cholesterol 7α-hydroxylase (CYP7A1) and ileal apical sodium BA transporter expressions in CLA-fed mice. Furthermore, hepatic Na(+)/taurocholate co-transporting polypeptide (NTCP) (-52%) and bile salt export pump (BSEP) (-77%) protein levels were lower in CLA-fed mice than in controls, leading to a greater accumulation of BA in the plasma (+500%); also, the cholesterol saturation index and the concentration of hydrophobic BA in the bile were greater in CLA-fed mice, changes associated with the presence of cholesterol crystals. Expt. 2 suggests that CLA-mediated changes were caused by hyperinsulinemia, which occurred after 6 d of the CLA diet before NTCP and BSEP mRNA downregulation (10 d). Expt. 3 demonstrated that only t10,c12-CLA altered NTCP and BSEP mRNA levels. In conclusion, t10,c12-CLA alters BA homeostasis and increases the risk of cholelithiasis in mice.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colelitíase/etiologia , Gorduras na Dieta/administração & dosagem , Homeostase , Ácido alfa-Linolênico/administração & dosagem , Animais , Western Blotting , Colesterol/metabolismo , Feminino , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Fatores de Risco
2.
J Biol Chem ; 286(28): 25201-10, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21610069

RESUMO

The membrane glycoprotein CD36 binds nanomolar concentrations of long chain fatty acids (LCFA) and is highly expressed on the luminal surface of enterocytes. CD36 deficiency reduces chylomicron production through unknown mechanisms. In this report, we provide novel insights into some of the underlying mechanisms. Our in vivo data demonstrate that CD36 gene deletion in mice does not affect LCFA uptake and subsequent esterification into triglycerides by the intestinal mucosa exposed to the micellar LCFA concentrations prevailing in the intestine. In rodents, the CD36 protein disappears early from the luminal side of intestinal villi during the postprandial period, but only when the diet contains lipids. This drop is significant 1 h after a lipid supply and associates with ubiquitination of CD36. Using CHO cells expressing CD36, it is shown that the digestion products LCFA and diglycerides trigger CD36 ubiquitination. In vivo treatment with the proteasome inhibitor MG132 prevents the lipid-mediated degradation of CD36. In vivo and ex vivo, CD36 is shown to be required for lipid activation of ERK1/2, which associates with an increase of the key chylomicron synthesis proteins, apolipoprotein B48 and microsomal triglyceride transfer protein. Therefore, intestinal CD36, possibly through ERK1/2-mediated signaling, is involved in the adaptation of enterocyte metabolism to the postprandial lipid challenge by promoting the production of large triglyceride-rich lipoproteins that are rapidly cleared in the blood. This suggests that CD36 may be a therapeutic target for reducing the postprandial hypertriglyceridemia and associated cardiovascular risks.


Assuntos
Antígenos CD36/metabolismo , Quilomícrons/biossíntese , Enterócitos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Ubiquitinação/fisiologia , Animais , Apolipoproteína B-48/genética , Apolipoproteína B-48/metabolismo , Antígenos CD36/genética , Células CHO , Quilomícrons/genética , Cricetinae , Cricetulus , Enterócitos/citologia , Hipertrigliceridemia , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Período Pós-Prandial , Ratos , Ratos Wistar
3.
J Lipid Res ; 48(2): 278-87, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17114807

RESUMO

The effects of chronic fat overconsumption on intestinal physiology and lipid metabolism remain elusive. It is unknown whether a fat-mediated adaptation to lipid absorption takes place. To address this issue, mice fed a high-fat diet (40%, w/w) were refed or not a control diet (3%, w/w) for 3 additive weeks. Despite daily lipid intake 7.7-fold higher than in controls, fecal lipid output remained unchanged in mice fed the triglyceride (TG)-rich diet. In situ isolated jejunal loops revealed greater [1-(14)C]linoleic acid uptake without TG accumulation in mucosa, suggesting an increase in lipid absorption capacity. Induction both in intestinal mitotic index and in the expression of genes involved in fatty acid uptake, trafficking, and lipoprotein synthesis was found in high-fat diet mice. These changes were lipid-mediated, in that they were fully abolished in mice refed the control diet. A lipid load test performed in the presence or absence of the LPL inhibitor tyloxapol showed a sustained blood TG clearance in fat-fed mice likely attributable to intestinal modulation of LPL regulators (apolipoproteins C-II and C-III). These data demonstrate that a chronic high-fat diet greatly affects intestinal physiology and body lipid use in the mouse.


Assuntos
Dieta , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Absorção Intestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Período Pós-Prandial , Triglicerídeos/sangue , Animais , Proliferação de Células , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Absorção Intestinal/genética , Absorção Intestinal/fisiologia , Jejuno/citologia , Jejuno/efeitos dos fármacos , Jejuno/fisiologia , Masculino , Camundongos , Esteatorreia/etiologia
4.
J Biol Chem ; 277(2): 1324-31, 2002 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-11684682

RESUMO

Ileal bile acid-binding protein (I-BABP) is a cytosolic protein that binds bile acid (BA) specifically. In the ileum, it is thought to be implied in their enterohepatic circulation. Because the fecal excretion of BA represents the main physiological way of elimination for cholesterol (CS), the I-BABP gene could have a major function in CS homeostasis. Therefore, the I-BABP gene expression might be controlled by CS. I-BABP mRNA levels were significatively increased when the human enterocyte-like CaCo-2 cells were CS-deprived and repressed when CS were added to the medium. A highly conserved sterol regularory element-like sequence (SRE) and a putative GC box were found in human I-BABP gene promoter. Different constructs of human I-BABP promoter, cloned upstream of a chloramphenicol acetyltransferase (CAT) reporter gene, have been used in transfections studies. CAT activity of the wild type promoter was increased in presence of CS-deprived medium, and conversely, decreased by a CS-supplemented medium. The inductive effect of CS depletion was fully abolished when the putative SRE sequence and/or GC box were mutated or deleted. Co-transfections experiments with the mature isoforms of human sterol responsive element-binding proteins (SREBPs) and Sp1 demonstrate that the CS-mediated regulation of I-BABP gene was dependent of these transcriptional factors. Paradoxically, mice subjected to a standard chow supplemented with 2% CS for 14 days exhibited a significant rise in both I-BABP and SREBP1c mRNA levels. We show that in vivo, this up-regulation could be explained by a recently described regulatory pathway involving a positive regulation of SREBP1c by liver-X-receptor following a high CS diet.


Assuntos
Ácidos e Sais Biliares/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Transporte/genética , Colesterol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidroxiesteroide Desidrogenases , Íleo/metabolismo , Glicoproteínas de Membrana , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares , Fatores de Transcrição , Animais , Sequência de Bases , Células CACO-2 , Proteínas de Transporte/metabolismo , Colesterol/administração & dosagem , Colesterol na Dieta , Técnicas de Cultura , Regulação da Expressão Gênica/fisiologia , Genes Reporter , Humanos , Receptores X do Fígado , Masculino , Camundongos , Dados de Sequência Molecular , Receptores Nucleares Órfãos , Coelhos , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/metabolismo , Receptores dos Hormônios Tireóideos/agonistas , Receptores dos Hormônios Tireóideos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...