Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Front Oncol ; 14: 1360726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966066

RESUMO

Inflammatory pseudotumor-like follicular dendritic cell sarcoma (IPT-like FDCS) is a rare malignancy with fewer than 150 cases in the literature. IPT-like FDCS follows an indolent course with most cases definitively managed with surgical resection. We present a case of IPT-like FDCS with multiple recurrences with a trial of immunotherapy. The patient initially presented with splenic involvement requiring splenectomy, subsequently recurring in the liver requiring hepatic resections. Afterwards, there was recurrence with pelvic/small bowel involvement for which treatment was trialed with ipilimumab and nivolumab. The patient progressed despite dual immune checkpoint inhibitor therapy requiring a small bowel resection. To date, this is the first case of immunotherapy use in IPT-like FDCS. Therefore, more evidence is needed to support additional treatments in recurrent IPT-like FDCS after resection.

2.
Nat Commun ; 13(1): 6620, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333309

RESUMO

As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information of executing specific tasks for a single QC. On the other hand, a comparison between different QCs preparing nominally the same arbitrary circuit provides an insight for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform state fidelities.

4.
Nature ; 599(7885): 393-398, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789908

RESUMO

Thermalization is a ubiquitous process of statistical physics, in which a physical system reaches an equilibrium state that is defined by a few global properties such as temperature. Even in isolated quantum many-body systems, limited to reversible dynamics, thermalization typically prevails1. However, in these systems, there is another possibility: many-body localization (MBL) can result in preservation of a non-thermal state2,3. While disorder has long been considered an essential ingredient for this phenomenon, recent theoretical work has suggested that a quantum many-body system with a spatially increasing field-but no disorder-can also exhibit MBL4, resulting in 'Stark MBL'5. Here we realize Stark MBL in a trapped-ion quantum simulator and demonstrate its key properties: halting of thermalization and slow propagation of correlations. Tailoring the interactions between ionic spins in an effective field gradient, we directly observe their microscopic equilibration for a variety of initial states, and we apply single-site control to measure correlations between separate regions of the spin chain. Furthermore, by engineering a varying gradient, we create a disorder-free system with coexisting long-lived thermalized and non-thermal regions. The results demonstrate the unexpected generality of MBL, with implications about the fundamental requirements for thermalization and with potential uses in engineering long-lived non-equilibrium quantum matter.

5.
Science ; 372(6547): 1192-1196, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112691

RESUMO

Extending the framework of statistical physics to the nonequilibrium setting has led to the discovery of previously unidentified phases of matter, often catalyzed by periodic driving. However, preventing the runaway heating that is associated with driving a strongly interacting quantum system remains a challenge in the investigation of these newly discovered phases. In this work, we utilize a trapped-ion quantum simulator to observe the signatures of a nonequilibrium driven phase without disorder-the prethermal discrete time crystal. Here, the heating problem is circumvented not by disorder-induced many-body localization, but rather by high-frequency driving, which leads to an expansive time window where nonequilibrium phases can emerge. Floquet prethermalization is thus presented as a general strategy for creating, stabilizing, and studying intrinsically out-of-equilibrium phases of matter.

6.
Proc Natl Acad Sci U S A ; 117(41): 25402-25406, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989132

RESUMO

Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum-classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results.

7.
Phys Rev Lett ; 125(5): 053001, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32794882

RESUMO

We report the electromagnetically-induced-transparency (EIT) cooling of a large trapped ^{171}Yb^{+} ion chain to the quantum ground state. Unlike conventional EIT cooling, we engage a four-level tripod structure and achieve fast sub-Doppler cooling over all motional modes. We observe simultaneous ground-state cooling across the complete transverse mode spectrum of up to 40 ions, occupying a bandwidth of over 3 MHz. The cooling time is observed to be less than 300 µs, independent of the number of ions. Such efficient cooling across the entire spectrum is essential for high-fidelity quantum operations using trapped ion crystals for quantum simulators or quantum computers.

8.
Nat Commun ; 10(1): 5464, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784527

RESUMO

The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 171Yb+ ions. We demonstrate average single-qubit gate fidelities of 99.5[Formula: see text], average two-qubit-gate fidelities of 97.5[Formula: see text], and SPAM errors of 0.7[Formula: see text]. To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78[Formula: see text] and 35[Formula: see text], respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.

9.
Opt Express ; 27(20): 28143-28149, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684572

RESUMO

Trapped atomic ions are an ideal candidate for quantum network nodes, with long-lived identical qubit memories that can be locally entangled through their Coulomb interaction and remotely entangled through photonic channels. The integrity of this photonic interface is generally reliant on the purity of single photons produced by the quantum memory. Here, we demonstrate a single-photon source for quantum networking based on a trapped 138Ba+ ion with a single photon purity of g (2)(0)=(8.1±2.3)×10-5 without background subtraction. We further optimize the tradeoff between the photonic generation rate and the memory-photon entanglement fidelity for the case of polarization photonic qubits by tailoring the spatial mode of the collected light.

10.
Sci Adv ; 5(10): eaaw9918, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31667342

RESUMO

Generative modeling is a flavor of machine learning with applications ranging from computer vision to chemical design. It is expected to be one of the techniques most suited to take advantage of the additional resources provided by near-term quantum computers. Here, we implement a data-driven quantum circuit training algorithm on the canonical Bars-and-Stripes dataset using a quantum-classical hybrid machine. The training proceeds by running parameterized circuits on a trapped ion quantum computer and feeding the results to a classical optimizer. We apply two separate strategies, Particle Swarm and Bayesian optimization to this task. We show that the convergence of the quantum circuit to the target distribution depends critically on both the quantum hardware and classical optimization strategy. Our study represents the first successful training of a high-dimensional universal quantum circuit and highlights the promise and challenges associated with hybrid learning schemes.

11.
Obes Sci Pract ; 5(4): 354-365, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31452920

RESUMO

OBJECTIVE: Harnessing social support from existing social ties represents a key weight control practice. This trial evaluated an intervention that provided health-promoting technologies for leveraging the influence of existing social ties. METHODS: Volunteers (N = 36) with a body mass index between 25 and 55 kg m-2 were randomized to a 16-week, in-person, technology-supported behavioural weight-loss treatment (standard behavioural treatment) or the same programme supplemented by providing self-selected members of participants' social networks with a digital body-weight scale and Fitbit Zip physical activity tracker (ENHANCED). RESULTS: Average weight losses from baseline to 16 weeks did not significantly differ between groups (standard behavioural treatment, 5.30%, SD =3.93%; ENHANCED, 5.96%, SD = 5.19%, p = 0.63). By the 1-year follow-up, standard behavioural treatment had lost 5.63%, SD = 8.14% of baseline weight versus 4.73%, SD = 9.43% for ENHANCED (p = 0.82). ENHANCED reported self-weighing on more days than did standard behavioural treatment (p = 0.03). Most participants reported high programme satisfaction. Similar improvements were observed in perceived social support for diet and exercise from baseline to 16 weeks in both groups (ps < 0.05) but regressed by 1 year (ps < 0.01). CONCLUSION: Although feasible to implement, this technology-based, social support approach failed to enhance outcomes of a face-to-face, group-based behavioural weight-loss treatment.

12.
Nature ; 572(7769): 368-372, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341283

RESUMO

The circuit model of a quantum computer consists of sequences of gate operations between quantum bits (qubits), drawn from a universal family of discrete operations1. The ability to execute parallel entangling quantum gates offers efficiency gains in numerous quantum circuits2-4, as well as for entire algorithms-such as Shor's factoring algorithm5-and quantum simulations6,7. In circuits such as full adders and multiple-control Toffoli gates, parallelism can provide an exponential improvement in overall execution time through the divide-and-conquer technique8. More importantly, quantum gate parallelism is essential for fault-tolerant error correction of qubits that suffer from idle errors9,10. However, the implementation of parallel quantum gates is complicated by potential crosstalk, especially between qubits that are fully connected by a common-mode bus, such as in Coulomb-coupled trapped atomic ions11,12 or cavity-coupled superconducting transmons13. Here we present experimental results for parallel two-qubit entangling gates in an array of fully connected trapped 171Yb+ ion qubits. We perform a one-bit full-addition operation on a quantum computer using a depth-four quantum circuit4,14,15, where circuit depth denotes the number of runtime steps required. Our method exploits the power of highly connected qubit systems using classical control techniques and will help to speed up quantum circuits and achieve fault tolerance in trapped-ion quantum computers.

13.
Nature ; 567(7746): 61-65, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842638

RESUMO

Quantum scrambling is the dispersal of local information into many-body quantum entanglements and correlations distributed throughout an entire system. This concept accompanies the dynamics of thermalization in closed quantum systems, and has recently emerged as a powerful tool for characterizing chaos in black holes1-4. However, the direct experimental measurement of quantum scrambling is difficult, owing to the exponential complexity of ergodic many-body entangled states. One way to characterize quantum scrambling is to measure an out-of-time-ordered correlation function (OTOC); however, because scrambling leads to their decay, OTOCs do not generally discriminate between quantum scrambling and ordinary decoherence. Here we implement a quantum circuit that provides a positive test for the scrambling features of a given unitary process5,6. This approach conditionally teleports a quantum state through the circuit, providing an unambiguous test for whether scrambling has occurred, while simultaneously measuring an OTOC. We engineer quantum scrambling processes through a tunable three-qubit unitary operation as part of a seven-qubit circuit on an ion trap quantum computer. Measured teleportation fidelities are typically about 80 per cent, and enable us to experimentally bound the scrambling-induced decay of the corresponding OTOC measurement.

14.
Phys Rev Lett ; 120(7): 073001, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542957

RESUMO

The local phonon modes in a Coulomb crystal of trapped ions can represent a Hubbard system of coupled bosons. We selectively prepare single excitations at each site and observe free hopping of a boson between sites, mediated by the long-range Coulomb interaction between ions. We then implement phonon blockades on targeted sites by driving a Jaynes-Cummings interaction on individually addressed ions to couple their internal spin to the local phonon mode. The resulting dressed states have energy splittings that can be tuned to suppress phonon hopping into the site. This new experimental approach opens up the possibility of realizing large-scale Hubbard systems from the bottom up with tunable interactions at the single-site level.

15.
Nature ; 551(7682): 601-604, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29189781

RESUMO

A quantum simulator is a type of quantum computer that controls the interactions between quantum bits (or qubits) in a way that can be mapped to certain quantum many-body problems. As it becomes possible to exert more control over larger numbers of qubits, such simulators will be able to tackle a wider range of problems, such as materials design and molecular modelling, with the ultimate limit being a universal quantum computer that can solve general classes of hard problems. Here we use a quantum simulator composed of up to 53 qubits to study non-equilibrium dynamics in the transverse-field Ising model with long-range interactions. We observe a dynamical phase transition after a sudden change of the Hamiltonian, in a regime in which conventional statistical mechanics does not apply. The qubits are represented by the spins of trapped ions, which can be prepared in various initial pure states. We apply a global long-range Ising interaction with controllable strength and range, and measure each individual qubit with an efficiency of nearly 99 per cent. Such high efficiency means that arbitrary many-body correlations between qubits can be measured in a single shot, enabling the dynamical phase transition to be probed directly and revealing computationally intractable features that rely on the long-range interactions and high connectivity between qubits.

16.
Nat Commun ; 8(1): 1918, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203858

RESUMO

The Grover quantum search algorithm is a hallmark application of a quantum computer with a well-known speedup over classical searches of an unsorted database. Here, we report results for a complete three-qubit Grover search algorithm using the scalable quantum computing technology of trapped atomic ions, with better-than-classical performance. Two methods of state marking are used for the oracles: a phase-flip method employed by other experimental demonstrations, and a Boolean method requiring an ancilla qubit that is directly equivalent to the state marking scheme required to perform a classical search. We also report the deterministic implementation of a Toffoli-4 gate, which is used along with Toffoli-3 gates to construct the algorithms; these gates have process fidelities of 70.5% and 89.6%, respectively.

17.
Phys Rev Lett ; 119(23): 230501, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29286704

RESUMO

We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ∼20 ps duration, and demonstrate an entangled Bell state with (76±1)% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

18.
Philos Trans A Math Phys Eng Sci ; 375(2108)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29084886

RESUMO

Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

19.
Nat Commun ; 8(1): 697, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951588

RESUMO

Mesoscopic quantum superpositions, or Schrödinger cat states, are widely studied for fundamental investigations of quantum measurement and decoherence as well as applications in sensing and quantum information science. The generation and maintenance of such states relies upon a balance between efficient external coherent control of the system and sufficient isolation from the environment. Here we create a variety of cat states of a single trapped atom's motion in a harmonic oscillator using ultrafast laser pulses. These pulses produce high fidelity impulsive forces that separate the atom into widely separated positions, without restrictions that typically limit the speed of the interaction or the size and complexity of the resulting motional superposition. This allows us to quickly generate and measure cat states larger than previously achieved in a harmonic oscillator, and create complex multi-component superposition states in atoms.Generation of mesoscopic quantum superpositions requires both reliable coherent control and isolation from the environment. Here, the authors succeed in creating a variety of cat states of a single trapped atom, mapping spin superpositions into spatial superpositions using ultrafast laser pulses.

20.
Phys Rev Lett ; 118(25): 250502, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28696766

RESUMO

Trapped atomic ions are a leading platform for quantum information networks, with long-lived identical qubit memories that can be locally entangled through their Coulomb interaction and remotely entangled through photonic channels. However, performing both local and remote operations in a single node of a quantum network requires extreme isolation between spectator qubit memories and qubits associated with the photonic interface. We achieve this isolation by cotrapping ^{171}Yb^{+} and ^{138}Ba^{+} qubits. We further demonstrate the ingredients of a scalable ion trap network node with two distinct experiments that consist of entangling the mixed species qubit pair through their collective motion and entangling a ^{138}Ba^{+} qubit with an emitted visible photon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...