Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000288

RESUMO

Parkinson's disease (PD) is a gradually worsening neurodegenerative disorder affecting the nervous system, marked by a slow progression and varied symptoms. It is the second most common neurodegenerative disease, affecting over six million people in the world. Its multifactorial etiology includes environmental, genomic, and epigenetic factors. Clinical symptoms consist of non-motor and motor symptoms, with motor symptoms being the classic presentation. Therapeutic approaches encompass pharmacological, non-pharmacological, and surgical interventions. Traditional pharmacological treatment consists of administering drugs (MAOIs, DA, and levodopa), while emerging evidence explores the potential of antidiabetic agents for neuroprotection and gene therapy for attenuating parkinsonian symptoms. Non-pharmacological treatments, such as exercise, a calcium-rich diet, and adequate vitamin D supplementation, aim to slow disease progression and prevent complications. For those patients who have medically induced side effects and/or refractory symptoms, surgery is a therapeutic option. Deep brain stimulation is the primary surgical option, associated with motor symptom improvement. Levodopa/carbidopa intestinal gel infusion through percutaneous endoscopic gastrojejunostomy and a portable infusion pump succeeded in reducing "off" time, where non-motor and motor symptoms occur, and increasing "on" time. This article aims to address the general aspects of PD and to provide a comparative comprehensive review of the conventional and the latest therapeutic advancements and emerging treatments for PD. Nevertheless, further studies are required to optimize treatment and provide suitable alternatives.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Levodopa/uso terapêutico , Estimulação Encefálica Profunda/métodos , Antiparkinsonianos/uso terapêutico , Terapia Genética/métodos , Animais
2.
Biomedicines ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36979898

RESUMO

Neurodegenerative diseases (NDDs) are a major health problem worldwide. Statistics suggest that in America in 2030 there will be more than 12 million people suffering from a neurodegenerative pathology. Furthermore, the increase in life expectancy enhances the importance of finding new and better therapies for these pathologies. NDDs could be classified into chronic or acute, depending on the time required for the development of clinical symptoms and brain degeneration. Nevertheless, both chronic and acute stages share a common immune and inflammatory pathway in their pathophysiology. Immunization with neural-derived peptides (INDP) is a novel therapy that has been studied during the last decade. By inoculating neural-derived peptides obtained from the central nervous system (CNS), this therapy aims to boost protective autoimmunity, an autoreactive response that leads to a protective phenotype that produces a healing environment and neuroregeneration instead of causing damage. INDP has shown promising findings in studies performed either in vitro, in vivo or even in some pre-clinical trials of different NDDs, standing as a potentially beneficial therapy. In this review, we will describe some of the studies in which the effect of INDP strategies have been explored in different (chronic and acute) neurodegenerative diseases.

3.
Cell Death Discov ; 8(1): 396, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153318

RESUMO

Parkinson's disease (PD) remains a significant unmet clinical need. Gut dysbiosis stands as a PD pathologic source and therapeutic target. Here, we assessed the role of the gut-brain axis in PD pathology and treatment. Adult transgenic (Tg) α-synuclein-overexpressing mice served as subjects and were randomly assigned to either transplantation of vehicle or human umbilical cord blood-derived stem cells and plasma. Behavioral and immunohistochemical assays evaluated the functional outcomes following transplantation. Tg mice displayed typical motor and gut motility deficits, elevated α-synuclein levels, and dopaminergic depletion, accompanied by gut dysbiosis characterized by upregulation of microbiota and cytokines associated with inflammation in the gut and the brain. In contrast, transplanted Tg mice displayed amelioration of motor deficits, improved sparing of nigral dopaminergic neurons, and downregulation of α-synuclein and inflammatory-relevant microbiota and cytokines in both gut and brain. Parallel in vitro studies revealed that cultured dopaminergic SH-SY5Y cells exposed to homogenates of Tg mouse-derived dysbiotic gut exhibited significantly reduced cell viability and elevated inflammatory signals compared to wild-type mouse-derived gut homogenates. Moreover, treatment with human umbilical cord blood-derived stem cells and plasma improved cell viability and decreased inflammation in dysbiotic gut-exposed SH-SY5Y cells. Intravenous transplantation of human umbilical cord blood-derived stem/progenitor cells and plasma reduced inflammatory microbiota and cytokine, and dampened α-synuclein overload in the gut and the brain of adult α-synuclein-overexpressing Tg mice. Our findings advance the gut-brain axis as a key pathological origin, as well as a robust therapeutic target for PD.

4.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163103

RESUMO

Human lifestyle and dietary behaviors contribute to disease onset and progression. Neurodegenerative diseases (NDDs), considered multifactorial disorders, have been associated with changes in the gut microbiome. NDDs display pathologies that alter brain functions with a tendency to worsen over time. NDDs are a worldwide health problem; in the US alone, 12 million Americans will suffer from NDDs by 2030. While etiology may vary, the gut microbiome serves as a key element underlying NDD development and prognosis. In particular, an inflammation-associated microbiome plagues NDDs. Conversely, sequestration of this inflammatory microbiome by a correction in the dysbiotic state of the gut may render therapeutic effects on NDDs. To this end, treatment with short-chain fatty acid-producing bacteria, the main metabolites responsible for maintaining gut homeostasis, ameliorates the inflammatory microbiome. This intimate pathological link between the gut and NDDs suggests that the gut-brain axis (GBA) acts as an underexplored area for developing therapies for NDDs. Traditionally, the classification of NDDs depends on their clinical presentation, mostly manifesting as extrapyramidal and pyramidal movement disorders, with neuropathological evaluation at autopsy as the gold standard for diagnosis. In this review, we highlight the evolving notion that GBA stands as an equally sensitive pathological marker of NDDs, particularly in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and chronic stroke. Additionally, GBA represents a potent therapeutic target for treating NDDs.


Assuntos
Eixo Encéfalo-Intestino , Microbioma Gastrointestinal , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Animais , Humanos , Doenças Neurodegenerativas/microbiologia
5.
Biomolecules ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34572529

RESUMO

Stem cell transplantation with rehabilitation therapy presents an effective stroke treatment. Here, we discuss current breakthroughs in stem cell research along with rehabilitation strategies that may have a synergistic outcome when combined together after stroke. Indeed, stem cell transplantation offers a promising new approach and may add to current rehabilitation therapies. By reviewing the pathophysiology of stroke and the mechanisms by which stem cells and rehabilitation attenuate this inflammatory process, we hypothesize that a combined therapy will provide better functional outcomes for patients. Using current preclinical data, we explore the prominent types of stem cells, the existing theories for stem cell repair, rehabilitation treatments inside the brain, rehabilitation modalities outside the brain, and evidence pertaining to the benefits of combined therapy. In this review article, we assess the advantages and disadvantages of using stem cell transplantation with rehabilitation to mitigate the devastating effects of stroke.


Assuntos
Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Animais , Encéfalo/patologia , Microambiente Celular , Humanos , Transplante de Células-Tronco
6.
Neuromolecular Med ; 23(4): 540-548, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33830475

RESUMO

The present in vitro study showed that IL-2/IL-2R antibody complex facilitates Treg-induced neuroprotection in the oxygen glucose deprivation/reoxygenation (OGD/R) model of stroke. First, we examined the role of IL-2/IL-2R-treated Tregs in OGD/R-exposed rat primary cortical cells (PCCs), which represent the cell type of the ischemic gray matter in the stroke brain. Here, OGD/R induced cell death, which was attenuated by Tregs and more robustly by IL-2/IL-2R-treated Tregs, but not by IL-2/IL-2R treatment alone. Second, we next assessed IL-2/IL-2R effects in OGD/R-exposed human oligodendrocyte progenitor cells (OPCs), which correspond to the white matter injury after stroke. Results revealed that a similar pattern neuroprotection as seen in the gray matter, in that OGD/R triggered cell death, which was ameliorated by Tregs and more effectively by IL-2/IL-2R-treated Tregs, but IL-2/IL-2R treatment alone was not therapeutic. Third, as we begin to understand the mechanism underlying IL-2/IL-2R engagement of Tregs, we investigated the inflammatory response in OGD/R-exposed human neural progenitor cells (NPCs), which recapitulate both ischemic gray and white matter damage in stroke. Similar to PCCs and OPCs, OGD/R produced cell death and was blocked by Tregs and more efficiently by IL-2/IL-2R-treated Tregs, whereas IL-2/IL-2R treatment alone did not alter the ischemic insult. Moreover, the inflammatory marker, TNF-α, was upregulated after OGD/R, dampened by both Tregs and more efficiently by IL-2/IL-2R-treated Tregs but more pronounced in the latter, and not affected by IL-2/IL-2R treatment alone, suggesting IL-2/IL-2R-Treg-mediated modulation of inflammatory response in stroke. Altogether, these observations support the use of IL-2/IL-2R treatment in enhancing the anti-inflammatory effects of Tregs in stroke.


Assuntos
Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Glucose/metabolismo , Inflamação/metabolismo , Interleucina-2 , Neuroproteção , Oxigênio , Ratos , Traumatismo por Reperfusão/prevenção & controle , Linfócitos T Reguladores , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...