Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 536: 7-13, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360016

RESUMO

Growing evidence links high aldosterone levels with atrial fibrillation and other heart diseases. Here, we have investigated the functional consequences of culturing adult rat atrial myocytes with aldosterone, at the level of cell size, homeostasis of Ca2+, reactive oxygen species (ROS), and nitrogen oxide (NO). The protein levels of NO synthase (NOS), aldehyde dehydrogenase 2 (ALDH2), NADPH oxidase (NOX), and Na+-Ca2+ exchanger (NCX) were also studied. Aldosterone did not alter the expression of these proteins, except for the NCX, which was enhanced by nearly 100%. Additionally, the hormone inhibited and stimulated, respectively, the production of NO and ROS (the effect on ROS appeared after 24 h of treatment and reached a maximum by 4-6 days, with an EC50 of 1.2 nM). These changes in reactive species generation were blunted by tetrahydrobiopterin (BH4, a NOS cofactor), suggesting the involvement of an uncoupled NOS. An activator (Alda-1) and an inhibitor (daidzin) of ALDH2 were used, to determine if this enzyme activity is related to aldosterone effects, through possible modulation of ROS. Aldosterone produced a ∼10% increase in cell size and, remarkably, this hypertrophic effect, along with the corresponding changes in ROS and NO, were all mimicked by daidzin and prevented by Alda-1. Something different happened with SR Ca2+ release. Aldosterone increased both the magnitude of Ca2+ transients and the incidence of spontaneous Ca2+ oscillations, but these actions were not reproduced by daidzin. Moreover, rather than being prevented, they were further promoted by Alda-1, which also increased the rate of SR Ca2+ reuptake. These results suggest that NOS and ALDH2 may prevent some adverse consequences of aldosteronism (in the case of ALDH2, at the expense of exacerbating SR Ca2+ release). Our data also suggest a hierarchical model in which aldosterone promotes: SR Ca2+ release, then ROS production, and finally hypertrophy.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Aldosterona/farmacologia , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Biopterinas/análogos & derivados , Biopterinas/farmacologia , Homeostase/efeitos dos fármacos , Hipertrofia , Miócitos Cardíacos/efeitos dos fármacos , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Ratos , Retículo Sarcoplasmático/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo
2.
Cells ; 9(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878335

RESUMO

The skeletal muscle and myocardial cells present highly specialized structures; for example, the close interaction between the sarcoplasmic reticulum (SR) and mitochondria-responsible for excitation-metabolism coupling-and the junction that connects the SR with T-tubules, critical for excitation-contraction (EC) coupling. The mechanisms that underlie EC coupling in these two cell types, however, are fundamentally distinct. They involve the differential expression of Ca2+ channel subtypes: CaV1.1 and RyR1 (skeletal), vs. CaV1.2 and RyR2 (cardiac). The CaV channels transform action potentials into elevations of cytosolic Ca2+, by activating RyRs and thus promoting SR Ca2+ release. The high levels of Ca2+, in turn, stimulate not only the contractile machinery but also the generation of mitochondrial reactive oxygen species (ROS). This forward signaling is reciprocally regulated by the following feedback mechanisms: Ca2+-dependent inactivation (of Ca2+ channels), the recruitment of Na+/Ca2+ exchanger activity, and oxidative changes in ion channels and transporters. Here, we summarize both well-established concepts and recent advances that have contributed to a better understanding of the molecular mechanisms involved in this bidirectional signaling.


Assuntos
Canais de Cálcio/metabolismo , Canais de Cálcio/fisiologia , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/fisiologia , Citosol/metabolismo , Acoplamento Excitação-Contração/fisiologia , Humanos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/fisiologia , Retículo Sarcoplasmático/fisiologia , Transdução de Sinais
3.
Front Physiol ; 9: 1801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618813

RESUMO

Pirfenidone (PFD) is used to treat human pulmonary fibrosis. Its administration to animals with distinct forms of cardiovascular disease results in striking improvement in cardiac performance. Here, its functional impact on cardiac myocytes was investigated. Cells were kept 1-2 days under either control culture conditions or the presence of PFD (1 mM). Subsequently, they were subjected to electrical stimulation to assess the levels of contractility and intracellular Ca2+. The PFD treatment promoted an increase in both peak contraction and kinetics of shortening and relaxation. Moreover, the amplitude and kinetics of Ca2+ transients were enhanced as well. Excitation-contraction coupling (ECC) was also investigated, under whole-cell patch-clamp conditions. In keeping with a previous report, PFD increased twofold the density of Ca2+ current (ICa). Notably, a similar increase in the magnitude of Ca2+ transients was also observed. Thus, the gain of ECC was unaltered. Likewise, PFD did not alter the peak amplitude of caffeine-induced Ca2+ release, indicating stimulation of Ca2+-induced-Ca2+-release (CICR) at constant sarcoplasmic reticulum Ca2+ load. A phase-plane analysis indicated that PFD promotes myofilament Ca2+ desensitization, which is being compensated by higher levels of Ca2+ to promote contraction. Interestingly, although the expression of the Na+/Ca2+ exchanger (NCX) was unaffected, the decay of Ca2+ signal in the presence of caffeine was 50% slower in PFD-treated cells (compared with controls), suggesting that PFD downregulates the activity of the exchanger. PFD also inhibited the production of reactive oxygen species, under both, basal conditions and the presence of oxidative insults (acetaldehyde and peroxide hydrogen). Conversely, the production of nitric oxide was either increased (in atrial myocytes) or remained unchanged (in ventricular myocytes). Protein levels of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) were also investigated. eNOS values did not exhibit significant changes. By contrast, a dual regulation was observed for nNOS, which consisted of inhibition and stimulation, in ventricular and atrial myocytes, respectively. In the latter cells, therefore, an up-regulation of nNOS was sufficient to stimulate the synthesis of NO. These findings improve our knowledge of molecular mechanisms of PFD action and may also help in explaining the corresponding cardioprotective effects.

4.
Pflugers Arch ; 468(11-12): 1823-1835, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27631154

RESUMO

It is widely accepted that aldosterone induces atrial fibrillation (AF) by promoting structural changes, but its effects on the function of primary atrial myocytes remain unknown. We have investigated this point in adult rat atrial myocytes, chronically exposed to the hormone. This treatment produced larger amplitude of Ca2+ transients, longer action potential (AP) duration, and higher incidence of unsynchronized Ca2+ oscillations. Moreover, it also gave rise to increases in both cell membrane capacitance (Cm, 30 %) and activity of L-type Ca2+ channels (LTCCs, 100 %). Concerning K+ currents, a twofold increase was also observed, but only in a delayed rectifier component (IKsus). Interestingly, the maximal conductance (Gmax) of Na+ channels was also enhanced, but it occurred in the face of a negative shift in the voltage dependence of inactivation. Thus, at physiological potentials, a decreased fraction of available channels neutralized the effect on GNa-max. With regard to the effects on both Cm and LTCCs, they involved activation of mineralocorticoid receptors (MRs), were dose-dependent (EC50 ∼20-130 nM), and developed and recovered in days. Neither gating currents nor protein levels of LTCCs were altered. Instead, the effect on LTCCs was mimicked by cAMP, reverted by a PKA inhibitor, and attenuated by a nitric oxide donor (short-term exposures). Both EGTA and the antioxidant NAC prevented the increase in Cm, without significantly interfering with the upregulation of LTCCs. Overall, these results show that chronic exposures to aldosterone result in dire functional changes at the single myocyte level, which may explain the link between aldosteronism and AF.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Aldosterona/farmacologia , Canais de Cálcio Tipo L/metabolismo , Átrios do Coração/citologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Átrios do Coração/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Receptores de Mineralocorticoides/metabolismo , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...