Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18103, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302874

RESUMO

Marine forests are shrinking globally due to several anthropogenic impacts including climate change. Forest-forming macroalgae, such as Cystoseira s.l. species, can be particularly sensitive to environmental conditions (e.g. temperature increase, pollution or sedimentation), especially during early life stages. However, not much is known about their response to the interactive effects of ocean warming (OW) and acidification (OA). These drivers can also affect the performance and survival of crustose coralline algae, which are associated understory species likely playing a role in the recruitment of later successional species such as forest-forming macroalgae. We tested the interactive effects of elevated temperature, low pH and species facilitation on the recruitment of Cystoseira compressa. We demonstrate that the interactive effects of OW and OA negatively affect the recruitment of C. compressa and its associated coralline algae Neogoniolithon brassica-florida. The density of recruits was lower under the combinations OW and OA, while the size was negatively affected by the temperature increase but positively affected by the low pH. The results from this study show that the interactive effects of climate change and the presence of crustose coralline algae can have a negative impact on the recruitment of Cystoseira s.l. species. While new restoration techniques recently opened the door to marine forest restoration, our results show that the interactions of multiple drivers and species interactions have to be considered to achieve long-term population sustainability.


Assuntos
Rodófitas , Alga Marinha , Mudança Climática , Alga Marinha/fisiologia , Florestas , Concentração de Íons de Hidrogênio , Água do Mar
2.
Harmful Algae ; 113: 102199, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35287932

RESUMO

In recent decades, recurrent Ostreopsis spp. blooms have been recorded throughout the globe, causing public health issues and mass mortalities of invertebrates. Ostreopsis species are benthic and develop in shallow waters in close relation with a substrate, but possible substrate preferences are still ambiguous. Bloom develops on both living and dead substrates and several interacting biotic and abiotic factors acting at different spatial scales can potentially foster or regulate Ostreopsis spp. development. The objective of this review is to collect and summarize information on Ostreopsis spp. blooms related to the habitat at different spatial scales, in order to assess preferences and trends. References including Ostreopsis spp. samplings in the field were analysed in this review, as potentially including information about the micro- (substrate), meso­ (community) and macrohabitat (ecosystem) related to Ostreopsis spp. blooms. The sampled substrate and the ecosystem where Ostreopsis spp. were collected were generally reported and described in the studies, while the description of the mesohabitat was rarely reported. Ostreopsis spp. were generally described as attached to biotic substrates and in particular, macroalgae, even in studies conducted in coral reefs, where macroalgae are generally not dominant (but they can be in case of coral reef degradation). In both temperate and tropical areas, Ostreopsis spp. were mostly sampled on algal species usually forming medium or low complexity communities (erect or turf-forming algae), often characteristic from post-regime shift scenarios, and rarely on canopy-forming species (such as fucoids and kelps). This literature review highlights the need of collecting more information about the mesohabitat where important Ostreopsis spp. blooms develop, as much as of the underlying mechanisms driving eventual differences on Ostreopsis spp. abundances. This knowledge would allow a better risk assessment of Ostreopsis spp. blooms, identifying areas at high risk on the base of the benthic habitats.


Assuntos
Dinoflagellida , Alga Marinha , Recifes de Corais , Dinoflagellida/fisiologia , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...