Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 17(12): 1076-1080, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374201

RESUMO

Metamaterials, tunable artificial materials, are useful playgrounds to investigate magnetic systems. So far, artificial Ising spin systems have revealed features such as emergent magnetic monopoles1,2 and charge fragmentation3. Here we present a metasystem composed of a lattice of dipolarly coupled nanomagnets. The magnetic spin of each nanomagnet is constrained to lie along a body diagonal, which yields four possible spin states. We show that the magnetic ordering of this metasystem (antiferromagnetic, ferromagnetic or spin ice like) is determined by the spin states orientation relative to the underlying lattice. The dipolar four-state Potts model explains our experimental observations and sheds light on the role of symmetry, as well as short- and long-range dipolar magnetic interactions, in such non-Ising spin systems.

2.
Phys Rev Lett ; 117(14): 147203, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740830

RESUMO

Using specially engineered structures to tailor the optical absorption in a metallic multilayer, we analyze the magnetization dynamics of a Co/Pt multilayer buried below a thick Cu layer. We demonstrate that hot electrons alone can very efficiently induce ultrafast demagnetization. Simulations based on hot electron ballistic transport implemented within a microscopic model that accounts for local dissipation of angular momentum nicely reproduce the experimental results, ruling out contribution of pure thermal transport.

4.
Phys Rev Lett ; 115(15): 157204, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26550750

RESUMO

Double-barrier heterostructures are model systems for the study of electron tunneling and discrete energy levels in a quantum well (QW). Until now resonant tunneling phenomena in metallic QWs have been observed for limited thicknesses (1-2 nm) under which electron phase coherence is conserved. In the present study we show evidence of QW resonance states in Fe QWs up to 12 nm thick and at room temperature in fully epitaxial double MgAlO_{x} barrier magnetic tunnel junctions. The electron phase coherence displayed in this QW is of unprecedented quality because of a homogenous interface phase shift due to the small lattice mismatch at the Fe-MgAlO_{x} interface. The physical understanding of the critical role of interface strain on QW phase coherence will greatly promote the development of spin-dependent quantum resonant tunneling applications.

5.
Sci Rep ; 5: 9815, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26011004

RESUMO

The manipulation of magnetic domain walls in thin films and nanostructures opens new opportunities for fundamental and applied research. But controlling reliably the position of a moving domain wall still remains challenging. So far, most of the studies aimed at understanding the physics of pinning and depinning processes in the magnetic layer in which the wall moves (active layer). In these studies, the role of other magnetic layers in the stack has been often ignored. Here, we report an indirect localization process of 180° domain walls that occurs in magnetic tunnel junctions, commonly used in spintronics. Combining Scanning Transmission X-Ray Microscopy and micromagnetic simulations, magnetic configurations in both layers are resolved. When nucleating a 180° domain wall in the active layer, a quasi wall is created in the reference layer, atop the wall. The wall and its quasi wall must then be moved or positioned together, as a unique object. As a mutual effect, a localized change of the magnetic properties in the reference layer induces a localized quasi wall in the active layer. The two types of quasi walls are shown to be responsible for an indirect localization process of the 180° domain wall in the active layer.

6.
Nat Commun ; 5: 4547, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-25088937

RESUMO

Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.

7.
Sci Rep ; 4: 5702, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25029620

RESUMO

A crystal of emerging magnetic charges is expected in the phase diagram of the dipolar kagomé spin ice. An observation of charge crystallites in thermally demagnetized artificial spin ice arrays has been recently reported by S. Zhang and coworkers and explained through the thermodynamics of the system as it approaches a charge-ordered state. Following a similar approach, we have generated a partial order of magnetic charges in an artificial kagomé spin ice lattice made out of ferrimagnetic material having a Curie temperature of 475 K. A statistical study of the size of the charge domains reveals an unconventional sawtooth distribution. This distribution is in disagreement with the predictions of the thermodynamic model and is shown to be a signature of the kinetic process governing the remagnetization.

8.
J Phys Condens Matter ; 25(29): 296001, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23803392

RESUMO

The accuracy of finite difference methods is related to the mesh choice and cell size. Concerning the micromagnetism of nano-objects, we show here that discretization issues can drastically affect the symmetry of the problem and therefore the resulting computed properties of lattices of interacting curved nanomagnets. In this paper, we detail these effects for the multi-axis kagome lattice. Using the OOMMF finite difference method, we propose an alternative way of discretizing the nanomagnet shape via a variable moment per cell scheme. This method is shown to be efficient in reducing discretization effects.


Assuntos
Simulação por Computador , Imãs , Nanoestruturas/química , Nanotecnologia/instrumentação , Algoritmos , Software
9.
Phys Rev Lett ; 111(24): 247601, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483698

RESUMO

The anharmonicity of the potential well confining a magnetic vortex core in a nanodot is measured dynamically with a magnetic resonance force microscope (MRFM). The stray field of the MRFM tip is used to displace the equilibrium core position away from the nanodot center. The anharmonicity is then inferred from the relative frequency shift induced on the eigenfrequency of the vortex core translational mode. An analytical framework is proposed to extract the anharmonic coefficient from this variational approach. Traces of these shifts are recorded while scanning the tip above an isolated nanodot, patterned out of a single crystal FeV film. We observe a +10% increase of the eigenfrequency when the equilibrium position of the vortex core is displaced to about one-third of its radius. This calibrates the tunability of the gyrotropic mode by external magnetic fields.

10.
Phys Rev Lett ; 109(10): 106601, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23005312

RESUMO

We report experimental evidence of thermal effects on the displacement of vortex walls in NiFe nanostrips. With the use of nanosecond current pulses, a unidirectional motion of the magnetic domain walls towards the hotter part of the nanostrips is observed, in addition to current-induced domain wall motion. By tuning the heat dissipation in the samples and modeling the heat diffusion, we conclude that this unidirectional motion can only be explained by the presence of a temperature profile along the nanostrip. A quantitative analysis of the experiments shows that, on top of the classical thermodynamic pressure on the domain wall, another force, probably the magnonic spin Seebeck effect, is displacing the domain walls.

11.
Nanotechnology ; 23(36): 365302, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22914506

RESUMO

We present real time atomic force microscopy imaging during nanogap fabrication by feedback controlled electromigration of a gold nanowire. The correlated measurements of electrical resistance and atomic force microscopy reveal that the major structural changes appear at the early stage of the process. Moreover, despite important morphological changes, the resistance of the nanowire shows a weak increase of just a few ohms. The detailed analysis of the atomic force microscopy images clearly shows that the electromigration process is strongly influenced by the initial microstructure of the nanowire.

12.
Phys Rev Lett ; 108(17): 176602, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680889

RESUMO

In combining spin- and symmetry-resolved photoemission, magnetotransport measurements and ab initio calculations we detangled the electronic states involved in the electronic transport in Fe(1-x)Co(x)(001)/MgO/Fe(1-x)Co(x)(001) magnetic tunnel junctions. Contrary to previous theoretical predictions, we observe a large reduction in TMR (from 530 to 200% at 20 K) for Co content above 25 atomic% as well as anomalies in the conductance curves. We demonstrate that these unexpected behaviors originate from a minority spin state with Δ(1) symmetry that exists below the Fermi level for high Co concentration. Using angle-resolved photoemission, this state is shown to be a two-dimensional state that occurs at both Fe(1-x)Co(x)(001) free surface, and more importantly at the interface with MgO. The combination of this interface state with the peculiar density of empty states due to chemical disorder allows us to describe in details the complex conduction behavior in this system.

13.
Phys Rev Lett ; 109(24): 247602, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368378

RESUMO

We perform a spectroscopic study of the collective spin-wave dynamics occurring in a pair of magnetic nanodisks coupled by the magnetodipolar interaction. We take advantage of the stray field gradient produced by the magnetic tip of a ferromagnetic resonance force microscope to continuously tune and detune the relative resonance frequencies between two adjacent nano-objects. This reveals the anticrossing and hybridization of the spin-wave modes in the pair. At the exact tuning, the measured frequency splitting between the binding and antibinding modes corresponds to the strength of the dynamical dipolar coupling Ω. This accurate ferromagnetic resonance force microscope determination of Ω is measured versus the separation between the nanodisks. It agrees quantitatively with calculations of the expected dynamical magnetodipolar interaction in our sample.

14.
Phys Rev Lett ; 106(5): 057209, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405433

RESUMO

Magnetic frustration effects in artificial kagome arrays of nanomagnets are investigated using x-ray photoemission electron microscopy and Monte Carlo simulations. Spin configurations of demagnetized networks reveal unambiguous signatures of long range, dipolar interaction between the nanomagnets. As soon as the system enters the spin ice manifold, the kagome dipolar spin ice model captures the observed physics, while the short range kagome spin ice model fails.

15.
Phys Rev Lett ; 99(18): 187202, 2007 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17995434

RESUMO

We report on the experimental observation of tunneling across an ultrathin metallic Cr spacer layer that is inserted at the interface of a Fe/MgO/Fe(001) junction. We show how this remarkable behavior in a solid-state device reflects a quenching in the transmission of particular electronic states, as expected from the symmetry-filtering properties of the MgO barrier and the band structure of the bcc Cr(001) spacer in the epitaxial junction stack. This ultrathin Cr metallic barrier can promote quantum well states in an adjacent Fe layer.

16.
Phys Rev Lett ; 89(10): 107206, 2002 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12225223

RESUMO

Magnetic interactions involving ferromagnetic layers separated by an insulating barrier have been studied experimentally on a fully epitaxial hard-soft magnetic tunnel junction: Fe/MgO/Fe/Co. For a barrier thickness below 1 nm, a clear antiferromagnetic interaction is observed. Moreover, when reducing the MgO thickness from 1 to 0.5 nm, the coupling strength increases up to J=-0.26 erg.cm(-2). This behavior, well fitted by theoretical models, provides an unambiguous signature of the interlayer exchange coupling by spin-polarized quantum tunneling.

17.
Phys Rev Lett ; 86(16): 3646-9, 2001 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11328044

RESUMO

We have developed a new original technique to study the magnetization reversal dynamics of thin films with element selectivity in the nanosecond time scale. X-ray magnetic circular dichroism measurements in pump-probe mode are carried out taking advantage of the time structure of synchrotron radiation. The dynamics of the magnetization reversal of each of the layers of complex heterostructures (like spin valves or tunnel junctions) can be probed independently. The interlayer coupling in the studied systems has been shown to play a key role in the determination of the magnetization reversal of each individual layer.

18.
Science ; 286(5439): 507-9, 1999 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-10521341

RESUMO

The role of the metal-oxide interface in determining the spin polarization of electrons tunneling from or into ferromagnetic transition metals in magnetic tunnel junctions is reported. The spin polarization of cobalt in tunnel junctions with an alumina barrier is positive, but it is negative when the barrier is strontium titanate or cerium lanthanite. The results are ascribed to bonding effects at the transition metal-barrier interface. The influence of the electronic structure of metal-oxide interfaces on the spin polarization raises interesting fundamental problems and opens new ways to optimize the magnetoresistance of tunnel junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...