Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4867, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849367

RESUMO

Loss of connectivity between spinal V1 inhibitory interneurons and motor neurons is found early in disease in the SOD1G93A mice. Such changes in premotor inputs can contribute to homeostatic imbalance of motor neurons. Here, we show that the Extended Synaptotagmin 1 (Esyt1) presynaptic organizer is downregulated in V1 interneurons. V1 restricted overexpression of Esyt1 rescues inhibitory synapses, increases motor neuron survival, and ameliorates motor phenotypes. Two gene therapy approaches overexpressing ESYT1 were investigated; one for local intraspinal delivery, and the other for systemic administration using an AAV-PHP.eB vector delivered intravenously. Improvement of motor functions is observed in both approaches, however systemic administration appears to significantly reduce onset of motor impairment in the SOD1G93A mice in absence of side effects. Altogether, we show that stabilization of V1 synapses by ESYT1 overexpression has the potential to improve motor functions in ALS, demonstrating that interneurons can be a target to attenuate ALS symptoms.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Interneurônios , Camundongos Transgênicos , Neurônios Motores , Sinapses , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/terapia , Interneurônios/metabolismo , Neurônios Motores/metabolismo , Camundongos , Sinapses/metabolismo , Fenótipo , Masculino , Terapia Genética/métodos , Humanos , Feminino , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
2.
Sci Adv ; 10(22): eadk3229, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820149

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of somatic motor neurons. A major focus has been directed to motor neuron intrinsic properties as a cause for degeneration, while less attention has been given to the contribution of spinal interneurons. In the present work, we applied multiplexing detection of transcripts and machine learning-based image analysis to investigate the fate of multiple spinal interneuron populations during ALS progression in the SOD1G93A mouse model. The analysis showed that spinal inhibitory interneurons are affected early in the disease, before motor neuron death, and are characterized by a slow progressive degeneration, while excitatory interneurons are affected later with a steep progression. Moreover, we report differential vulnerability within inhibitory and excitatory subpopulations. Our study reveals a strong interneuron involvement in ALS development with interneuron specific degeneration. These observations point to differential involvement of diverse spinal neuronal circuits that eventually may be determining motor neuron degeneration.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Interneurônios , Camundongos Transgênicos , Neurônios Motores , Medula Espinal , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Camundongos , Interneurônios/metabolismo , Interneurônios/patologia , Medula Espinal/patologia , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Humanos , Progressão da Doença , Degeneração Neural/patologia
3.
Nat Commun ; 12(1): 3251, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059686

RESUMO

ALS is characterized by progressive inability to execute movements. Motor neurons innervating fast-twitch muscle-fibers preferentially degenerate. The reason for this differential vulnerability and its consequences on motor output is not known. Here, we uncover that fast motor neurons receive stronger inhibitory synaptic inputs than slow motor neurons, and disease progression in the SOD1G93A mouse model leads to specific loss of inhibitory synapses onto fast motor neurons. Inhibitory V1 interneurons show similar innervation pattern and loss of synapses. Moreover, from postnatal day 63, there is a loss of V1 interneurons in the SOD1G93A mouse. The V1 interneuron degeneration appears before motor neuron death and is paralleled by the development of a specific locomotor deficit affecting speed and limb coordination. This distinct ALS-induced locomotor deficit is phenocopied in wild-type mice but not in SOD1G93A mice after appearing of the locomotor phenotype when V1 spinal interneurons are silenced. Our study identifies a potential source of non-autonomous motor neuronal vulnerability in ALS and links ALS-induced changes in locomotor phenotype to inhibitory V1-interneurons.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Interneurônios/patologia , Locomoção/fisiologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fibras Musculares de Contração Rápida/fisiologia , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Medula Espinal/citologia , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
4.
Mult Scler Relat Disord ; 53: 103033, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34090131

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is an antibody-mediated autoimmune inflammatory disease of the central nervous system (CNS), resulting in primary astrocytopathy. We have previously shown that Angiotensin AT2-receptor (AT2R) stimulation with the specific agonist Compound 21 (C21) attenuated NMOSD-like pathology. Recent studies have proposed that the mechanism behind protective effects of AT2R includes induction of brain derived neurotrophic factor (BDNF). Astrocytes are a major cellular source of BDNF. In this study we used mice with conditional BDNF deficiency in astrocytes (GfapF) to examine the involvement of astrocyte-derived BDNF in NMOSD-like pathology and in mediating the protective effect of AT2R stimulation. METHODS: Anti-aquaporin-4 IgG (AQP4-IgG) from an NMOSD patient and human complement (C) were co-injected intrastriatally to GfapF and wildtype littermate BDNFfl/fl mice (WT), together with either C21 or vehicle at day 0, followed by intrathecal injection of C21 or vehicle at day 2 and tissue collection at day 4. RESULTS: Intracerebral/intrathecal injection of C21, alone or in combination with AQP4-IgG + C, induced BDNF expression in WT mice. Injection of AQP4-IgG + C induced NMOSD-like pathology, including loss of AQP4 and GFAP. There was no difference in the severity of pathological changes between GfapF and WT mice. C21 treatment significantly and equally ameliorated NMOSD-like pathology in both WT and GfapF mice. CONCLUSION: Our findings indicate that astrocyte-derived BDNF neither reduces the severity of NMOSD-like pathology nor is it necessary for the protective effect of AT2R stimulation in NMOSD-like pathology.


Assuntos
Neuromielite Óptica , Angiotensinas , Animais , Aquaporina 4/genética , Astrócitos , Autoanticorpos , Fator Neurotrófico Derivado do Encéfalo , Humanos , Camundongos , Neuromielite Óptica/tratamento farmacológico , Receptor Tipo 2 de Angiotensina/genética
5.
Mult Scler ; 26(10): 1187-1196, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287367

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing inflammatory central nervous system (CNS) disease for which there is no cure. Immunoglobulin G autoantibodies specific for the water channel aquaporin-4 are a serum biomarker, believed to induce complement-dependent astrocyte damage with secondary demyelination. OBJECTIVE: To investigate the effect of angiotensin AT2 receptor (AT2R) stimulation on NMOSD-like pathology and its underlying mechanism. METHODS: NMOSD-like pathology was induced in mice by intracerebral injection of immunoglobulin-G isolated from NMOSD patient serum, with complement. This mouse model produces the characteristic histological features of NMOSD. A specific AT2R agonist, Compound 21 (C21), was given intracerebrally at day 0 and by intrathecal injection at day 2. RESULTS: Loss of aquaporin-4 and glial fibrillary acidic protein was attenuated by treatment with C21. Administration of C21 induced mRNA for interleukin-10 in the brain. NMOSD-like pathology was exacerbated in interleukin-10-deficient mice, suggesting a protective role. C21 treatment did not attenuate NMOSD-like pathology in interleukin-10-deficient mice, indicating that the protective effect of AT2R stimulation was dependent on interleukin-10. CONCLUSION: Our findings identify AT2R as a novel potential therapeutic target for the treatment of NMOSD. Interleukin-10 signaling is an essential part of the protective mechanism counteracting NMOSD pathology.


Assuntos
Neuromielite Óptica , Animais , Aquaporina 4/genética , Autoanticorpos , Humanos , Interleucina-10 , Camundongos , Recidiva Local de Neoplasia , Neuromielite Óptica/tratamento farmacológico , Receptor Tipo 2 de Angiotensina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...