Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37896152

RESUMO

The rheological and viscoelastic properties of hybrid formulations composed of vehicles designed for cutaneous topical application and loaded with ultradeformable liposomes (UDL) were assessed. UDL were selected for their established ability to transport both lipophilic and hydrophilic compounds through the skin, and are applicable in pharmaceuticals and cosmetics. Formulations underwent flow analysis and were fitted to the Herschel-Bulkley model due to their prevalent non-Newtonian behavior in most cases. Linear viscoelastic regions (LVR) were identified, and G' and G″ moduli were determined via frequency sweep steps, considering the impact of temperature and aging. The formulations exhibited non-Newtonian behavior with pseudoplastic traits in most cases, with UDL incorporation inducing rheological changes. LVR and frequency sweep tests indicated predominantly elastic solid behavior, with G' higher than G″, at different temperatures and post-production times. Tan δ values also illustrated a predominant solid-like behavior over liquid. This study provides pivotal insights into the rheological and viscoelastic features of topical formulations, emphasizing the crucial role of meticulous vehicle and formulation selection when incorporating UDL or analogous liposomal drug delivery systems.

2.
J Phys Chem B ; 127(24): 5432-5444, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37289558

RESUMO

Anthocyanins are the main active compounds in blueberry. However, they have poor oxidation stability. If anthocyanins are encapsulated in protein nanoparticles, their oxidation resistance could be increased as a result of the slowing down of the oxidation process. This work describes the advantages of using a γ-irradiated bovine serum albumin nanoparticle bound to anthocyanins. The interaction was characterized biophysically, mainly by rheology. By computational calculation and simulation based on model nanoparticles, we estimated the number of molecules forming the albumin nanoparticles, which allowed us to infer the ratio of anthocyanin/nanoparticles. Measurements by UV-vis spectroscopy, FTIR spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), ζ potential, electron transmission microscopy, and rheology at room (25 °C) and physiological (37 °C) temperatures were performed. The spectroscopy measurements allowed identifying additional hydrophobic sites created during the irradiation process of the nanoparticle. On the basis of the rheological studies, it was observed that the BSA-NP trend is a Newtonian flow behavior type for all the temperatures selected, and there is a direct correlation between dynamic viscosity and temperature values. Furthermore, when anthocyanins are added, the system increases its resistance to the flow as reflected in the morphological changes observed by TEM, thus confirming the relationship between viscosity values and aggregate formation.


Assuntos
Antocianinas , Nanopartículas , Nanopartículas/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Oxirredução
3.
Pharmaceutics ; 13(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535434

RESUMO

Vismodegib is a first-in-class inhibitor for advanced basal cell carcinoma treatment. Its daily oral doses present a high distribution volume and several side effects. We evaluated its skin penetration loaded in diverse nanosystems as potential strategies to reduce side effects and drug quantities. Ultradeformable liposomes, ethosomes, colloidal liquid crystals, and dendrimers were able to transport Vismodegib to deep skin layers, while polymeric micelles failed at this. As lipidic systems were the most effective, we assessed the in vitro and in vivo toxicity of Vismodegib-loaded ultradeformable liposomes, apoptosis, and cellular uptake. Vismodegib emerges as a versatile drug that can be loaded in several delivery systems for topical application. These findings may be also useful for the consideration of topical delivery of other drugs with a low water solubility.

4.
Mater Sci Eng C Mater Biol Appl ; 112: 110891, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409048

RESUMO

BSA-capped gold nanoclusters are promising theragnostic systems that can be excited to render both fluorescence emission and reactive oxygen species. Although their synthesis and photoluminescence properties are already well described, more accurate information about their use as photosensitizers is required in order to advance towards health applications. In this work, we have obtained BSA-capped gold nanoclusters and characterized their photophysics by different techniques. Singlet oxygen production was detected upon irradiation, which was enough to produce toxicity on two cell lines. Remarkably, an internal energy transfer, probably due to the presence of smaller nanoclusters and the contribution of oxidized residues of BSA in the system, caused fluorescence emission near 640 nm after excitation in the UV range. Additionally, the system was capable of penetrating human skin beyond the stratum corneum, which enhances the potential of these nanoclusters as bifunctional photodynamic therapy effectors and biomarkers with application in a diversity of skin diseases. In the absence of radiation, BSA-capped gold nanoclusters did not cause toxicity in vitro, while their toxic effect on an in vivo model as zebrafish was determined.


Assuntos
Ouro/química , Nanopartículas/química , Soroalbumina Bovina/química , Pele/metabolismo , Adulto , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Larva/efeitos dos fármacos , Larva/fisiologia , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Oxigênio Singlete/metabolismo , Pele/efeitos dos fármacos , Raios Ultravioleta , Peixe-Zebra/crescimento & desenvolvimento
5.
J Cosmet Dermatol ; 19(11): 3127-3137, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32281258

RESUMO

BACKGROUND: Ultradeformable liposomes are promising carriers for cosmeceutical actives as they can be loaded with molecules of different polarities, and they present unique penetration properties. AIMS: While those features have already been tested, we wanted to know whether their special penetration properties could be maintained after incorporation in diverse cosmetic vehicles, including commercial products already in the market. METHODS: Ultradeformable liposomes loaded with a lipophilic and a hydrophilic fluorescent probe were prepared by lipid film resuspension, followed by extrusion and incorporation to different vehicles and commercial products. Penetration was determined in human and pig skin by incubation, with the Saarbrücken penetration model, followed by the recovery of the probes or by fluorescence microscopy. RESULTS: The incorporation of ultradeformable liposomes to cosmetic vehicles did not alter their penetration in most of the cases for human skin explants. Pig skin penetration presented significant differences compared with human explants. CONCLUSIONS: Ultradeformable liposomes could be useful as versatile cosmeceutical carriers in final product formulations.


Assuntos
Lipossomos , Absorção Cutânea , Administração Cutânea , Animais , Composição de Medicamentos , Lipossomos/metabolismo , Pele/metabolismo , Suínos
6.
J Cosmet Dermatol ; 19(11): 2958-2964, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32307833

RESUMO

BACKGROUND: Brewers' spent grain (BSG) is one of the most abundant by-products of the beer industry and causes serious environmental problems. Ferulic acid (FA) is an antioxidant with potential cosmeceutical applications. FA was extracted from BSG, developing a method of high extraction performance in order to be encapsulated in ultradeformable liposomes (Nanoferulic, NF). AIMS: To obtain a product with high added value such as FA, from a residue currently underused, using simple and economical chemical methods. To load FA into a nanosystem designed for the topical route, its encapsulation has the purpose to take profit from its photoprotective, anti-inflammatory, and antioxidant properties in the deep layers of the skin. METHODS: Ferulic acid was obtained from dried BSG using acid and basic treatments in series. NF was prepared by lipid film resuspension of a solution containing FA obtained from BSG. Size and Z-potential were determined. Cytotoxicity was assessed in vitro. Skin penetration was assessed by NF determination at different skin depths and by confocal microscopy. RESULTS: The yield of the extraction process was 0.43% on a dry basis. Encapsulation rendered liposomes of around 140 nm with 92% of encapsulation efficiency. No toxicity was observed in all the tested concentrations. Successful results were obtained from the regeneration studies. CONCLUSIONS: It was possible to develop a nanosystem containing FA, generating a high-value commercial input for the pharmaceutical and cosmeceutical industry. The use of BSG generated in industrial scale would help to reduce the volume of highly polluting waste.


Assuntos
Cerveja , Grão Comestível , Antioxidantes/farmacologia , Grão Comestível/química , Humanos , Regeneração
7.
Int J Pharm ; 565: 108-122, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31071417

RESUMO

Vismodegib (Erivedge®, Genentech) is a first-in-class inhibitor of the hedgehog signaling pathway for the treatment of basal cell carcinoma (BCC). The treatment currently consists of the oral administration of Erivedge® capsules. Although it has shown therapeutic efficacy in clinical trials, there are many side effects related to its systemic distribution. In this work, we have incorporated vismodegib to ultradeformable liposomes in order to obtain a nano-drug delivery system via topical route, which could be useful to reduce systemic distribution -and consequently side effects- while achieving a viable epidermis-specific target where neoplastic events of BCC develop. Vismodegib was loaded into liposomes composed of soy phosphatidylcholine and sodium cholate, and the obtained formulation was characterized by different techniques, both experimental and computational. Several analyses were performed,with a special focus on the interaction of the drug with the liposomal membrane. Additionally, the penetration of Vismodegib delivered by ultradeformable liposomes was assessed on human skin explants. This is one of the first works that propose the topical route for Vismodegib and the first, to our knowledge, in stabilizing this active into a nano-drug delivery system specifically designed for penetrating the stratum corneum impermeable barrier.


Assuntos
Anilidas/administração & dosagem , Antineoplásicos/administração & dosagem , Nanoestruturas/administração & dosagem , Piridinas/administração & dosagem , Pele/metabolismo , Administração Tópica , Adulto , Feminino , Humanos , Lipossomos , Absorção Cutânea , Neoplasias Cutâneas/tratamento farmacológico
8.
Nanomedicine (Lond) ; 14(4): 375-385, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30688554

RESUMO

AIM: Amino functionalization is a first step modification aiming to achieve biomedical applications of silicon nanoparticles, for example, for photodynamic therapy or radiotherapy. Nevertheless, toxicity and low quantum yields due to the positive charge of amino groups emerge as a problem that could be solved with subsequent derivatizations. MATERIALS & METHODS: Folic and PEG-conjugated nanoparticles were obtained from amino-functionalized silicon nanoparticle (NH2SiNP). Cytotoxicity was determined on a tumor cell line at low and high concentrations. Four end points of in vivo toxicity were evaluated on zebrafish (Danio rerio). RESULTS: Folic acid functionalization reduced the cytotoxicity in comparison to amino and PEG-functionalized nanoparticles. In zebrafish, folic functionalization lowered toxicity in general while PEG increased it. CONCLUSION: Functionalization of NH2SiNP with folic acid reduced the toxic effects in vitro and in vivo. This could be useful for therapeutic applications. PEG functionalization did not lower the toxicity.


Assuntos
Ácido Fólico/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/farmacologia , Nanopartículas/toxicidade , Silício/química , Silício/toxicidade , Peixe-Zebra
9.
Toxicol Appl Pharmacol ; 357: 106-114, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031011

RESUMO

Doxorubicin (DOX) hydrochloride is a powerful anthracycline antibiotic used for the treatment of various types of malignancies, particularly ovarian and metastatic breast cancer. However, DOX presents severe side effects, such as hepatotoxicity, nephrotoxicity, dose-limiting myelosuppression, brain damage and cardiotoxicity. A liposomal formulation, Doxil®, was approved by the FDA, which has managed to reduce the number of cardiac events in patients with metastatic breast cancer. However, in comparison to free DOX, Doxil® has not shown significant improvements regarding survival. We have previously designed DOX-loaded mixed micelles (MMDOX) composed of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and Tetronic® T1107. To assess the potential toxic effects of this novel formulation, in this work the zebrafish (Danio rerio) model was used to evaluate its in vivo toxicity and teratogenicity. This study evaluated and compared the effects of DOX exposure from different formulations (free DOX, MMDOX and Doxil®) on the swimming activity, morphological alterations, cardiac rhythm, lethality rate and DOX biodistribution. MMDOX showed lower lethal effects, morphological alterations and neurotoxic effects than the free drug. This study shows the potential of the MMDOX to be an effective DOX-delivery system because it could reduce the side effects.


Assuntos
Doxorrubicina/farmacocinética , Doxorrubicina/toxicidade , Micelas , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Larva/efeitos dos fármacos , Atividade Motora , Distribuição Tecidual , Peixe-Zebra
10.
Nanomedicine (Lond) ; 13(11): 1349-1370, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29949470

RESUMO

Silicon blue-emitting nanoparticles (NPs) are promising effectors for photodynamic therapy and radiotherapy, because of their production of reactive oxygen species (ROS) upon irradiation. RESULTS: Amino-functionalized silicon NPs (NH2SiNP) were intrinsically nontoxic below 100 µg/ml in vitro (on two tumor cell lines) and in vivo (zebrafish larvae and embryos). NH2SiNP showed a moderate effect as a photosensitizer for photodynamic therapy and reduced ROS generation in radiotherapy, which could be indicative of a ROS scavenging effect. Encapsulation of NH2SiNP into ultradeformable liposomes improved their skin penetration after topical application, reaching the viable epidermis where neoplastic events occur. CONCLUSION: Subsequent derivatizations after amino-functionalization and incorporation to nanodrug delivery systems could expand the spectrum of the biomedical application of these kind of silicon NPs.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Fármacos Fotossensibilizantes/administração & dosagem , Silício/administração & dosagem , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Nanopartículas/administração & dosagem , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Silício/química , Peixe-Zebra/crescimento & desenvolvimento
11.
Drug Deliv Transl Res ; 8(3): 496-514, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29288359

RESUMO

With the aim of improving the topical delivery of the antineoplastic drug 5-fluorouracil (5FU), it was loaded into ultradeformable liposomes composed of soy phosphatidylcholine and sodium cholate (UDL-5FU). The liposome populations had a mean size of 70 nm without significant changes in 56 days, and the ultradeformable formulations were up to 324-fold more elastic than conventional liposomes. The interaction between 5FU and the liposomal membrane was studied by three methods, and also release profile was obtained. UDL-5FU did penetrate the stratum corneum of human skin. At in vitro experiments, the formulation was more toxic on a human melanoma-derived than on a human keratinocyte-derived cell line. Cells captured liposomes by metabolically active processes. In vivo toxicity experiments were carried out in zebrafish (Danio rerio) larvae by studying the swimming activity, morphological changes, and alterations in the heart rate after incubation. UDL-5FU was more toxic than free 5FU. Therefore, this nano-formulation could be useful for topical application in deep skin precancerous lesions with advantages over current treatments. This is the first work that assessed the induction of apoptosis, skin penetration in a Saarbrücken penetration model, and the toxicological effects in vivo of an ultradeformable 5FU-loaded formulation.


Assuntos
Antineoplásicos/administração & dosagem , Fluoruracila/administração & dosagem , Nanopartículas/administração & dosagem , Administração Cutânea , Administração Tópica , Adulto , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Fluoruracila/química , Fluoruracila/toxicidade , Frequência Cardíaca/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Lipossomos , Melanoma/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/química , Fosfatidilcolinas/toxicidade , Pele/metabolismo , Absorção Cutânea , Colato de Sódio/administração & dosagem , Colato de Sódio/química , Colato de Sódio/toxicidade , Peixe-Zebra/fisiologia
12.
J Cosmet Dermatol ; 17(5): 889-899, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28975707

RESUMO

BACKGROUND: Ethanolic extract from blueberry (Vaccinium myrtillus) is rich in anthocyanins and thus exhibits antioxidant activity. On the other hand, ultradeformable liposomes are capable of penetrating to the impermeable barrier of skin. Nanoberries are ultradeformable liposomes carrying blueberry extract. OBJECTIVES: In this study, their capacity to penetrate the stratum corneum and photodamage prevention were tested, with the aim of developing a topical formulation for skin protection from environmental damage. METHODS: Nanoberries were prepared by lipid film resuspension with ethanolic extract from blueberry, followed by sonication and incorporation to a gel. Size, zeta potential, deformability, rheology, and viscoelasticity were determined. Toxicity was assessed in vivo in zebrafish model, while in vitro cytotoxicity assay was performed on HaCaT and HEK-293T cell lines. Skin penetration was evaluated with the Saarbrücken penetration model followed by tape stripping, cryosection, or optical sectioning. UV-damage protection and photoprotection were determined by ad hoc methods with UVA, UVB, and UVC radiation on HaCaT cells. Wound assay was performed on HaCaT cells. RESULTS: Nanoberries of about 100 nm, with differential elastic properties, did penetrate the stratum corneum, with low toxicity. When HaCaT cells were exposed to UV radiation in the presence of nanoberries, their viability was maintained. CONCLUSIONS: Nanoberries could be effective to protect the skin from sun photodamage.


Assuntos
Antioxidantes/farmacologia , Mirtilos Azuis (Planta) , Dermatite Fototóxica/prevenção & controle , Extratos Vegetais/farmacologia , Absorção Cutânea/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Administração Tópica , Animais , Humanos , Modelos Animais , Técnicas de Cultura de Órgãos , Sensibilidade e Especificidade , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele , Peixe-Zebra
13.
Rev. cuba. med. trop ; 66(3): 370-385, sep.-dic. 2014.
Artigo em Espanhol | LILACS, CUMED | ID: lil-737007

RESUMO

Introducción: los liposomas ultradeformables de miltefosina (LUD-MIL) constituyen una opción para el tratamiento tópico en leishmaniasis cutánea penetrando los estratos de la piel hasta la dermis, sitio donde habita el parásito. Objetivo: diseñar LUD-MIL y determinar su actividad contra L. (Viannia) panamensis y L. (V.) braziliensis y la permeación en piel humana. Métodos: los LUD-MIL, liposomas convencionales de fosfatidilcolina (LConv) y LUD-MIL-fluorescente (LUD-MIL-Fluo) fueron preparados por el método de rehidratación de película lipídica. Se caracterizaron fisicoquímicamente y se determinaron: la liberación en membrana semisintéticas, la retención en las capas de la piel y la permeación en piel humana. La citotoxicidad en THP-1 fue determinada por el ensayo colorimétrico de MTT y la actividad en promastigotes y amastigotes intracelulares por recuento microscópico. Resultados: el tamaño, índice de polidispersión, potencial Z y concentración de fosfolípidos de los LUD-MIL fue de 100,7 nm, 0,147, -12,0 mV y 53,24 mM respectivamente. El flujo de MIL a través de la membrana fue mayor con LUD-MIL que con MIL-libre. El tratamiento con LUD-MIL indujo menor acumulación de la MIL en el estrato corneo y mayor permeación que el tratamiento con MIL libre. Los LUD-MIL y los LConv-MIL mantuvieron la actividad de la MIL en los parásitos y células. Los LUD-MIL fueron más tóxicos para las células que los LConv y la MIL y más activos en amastigotes intracelulares de L. (V.) braziliensis. Conclusión: los LUD-MIL preparados conservaron la actividad anti-Leishmania de la MIL y permitieron la liberación del compuesto en membranas y piel humana. Ensayos en modelos experimentales de leishmaniasis cutánea para evaluar la actividad de estas formulaciones son urgentes de realizar(AU)


Introduction: miltefosine ultradeformable liposomes (MIL-LUD) are an option for the topical treatment of cutaneous leishmaniasis penetrating the skin layers to the dermis where the parasite inhabits. Objective: to design MIL-LUD and determine their in vitro activity against L. (Viannia) panamensis and L. (V.) braziliensis and to determine human skin permeation. Methods: MIL-LUD, phosphatidylcholine liposomes (MIL-LConv) and fluorescent MIL-LUD (MIL-LUD-Fluo) were prepared by lipid film rehydration method. They were physicochemically characterized to determine drug release in semisynthetic membrane, retention in skin layers and permeation on human skin membranes. Cytotoxicity in THP-1 was determined by the MTT colorimetric test and activity in promastigotes and intracellular amastigotes by microscopic counting. Results: the size, the polydispersion index, the Zeta potential and phospholipid content were 100.7 nm, 0.147, -12.0mV and 53.24mM, respectively for MIL-LUD. MIL flow through the semisynthetic membrane was greater with MIL-LUD than MIL-free treatment. MIL-LUD treatment induced lower MIL accumulation in the stratum corneum and increased permeation than MIL free treatment. The MIL-LUD and MIL-Conv maintained MIL activity in parasites and cells. The MIL-LUD was more toxic to cells than MIL-Conv and more active against intracellular amastigotes of L. (V.) braziliensis. Conclusion: prepared LUD -MIL retained the anti-leishmanial activity of the MIL and allowed the compound release in human skin and membranes. Testing of experimental cutaneous leishmaniasis models to evaluate the activity of these formulations are urgently needed(AU)


Assuntos
Humanos , Leishmaniose Cutânea/terapia , Leishmaniose Cutânea/transmissão , Lipossomos/isolamento & purificação , Técnicas In Vitro/métodos , Leishmaniose Cutânea/tratamento farmacológico
14.
J Cosmet Sci ; 64(6): 469-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24397884

RESUMO

With the aim of improving the antioxidant activity of polyphenols from blueberries (Vaccinium myrtillus) on skin targets after topical application, ethanolic extracts from three blueberry varieties (named Millenia, O'Neal, and Blue Crisp) were loaded into ultradeformable liposomes. These nanocarriers are known to be capable of penetrating through the stratum corneum reaching its deeper layers and the viable epidermis. On the other hand, blueberries contain large amounts of polyphenols, whose antioxidant properties as tissue protectors against processes mediated by reactive oxygen species have been extensively proved. Blueberries are usually consumed as edible products, but their antioxidant compounds are poorly absorbed. The antioxidant properties of the extracts were screened before and after being loaded into ultradeformable liposomes made of soy phosphatidylcholine and sodium cholate, of nearly 100 nm in size at 0.223 extract/lipid w/w. The ethanolic extract-loaded ultradeformable liposomes (nanoberries) from Millenia variety retained an 85% of the antioxidant capacity of the free extract and showed low cytotoxicity on HaCaT cells (less than 20%) at active concentration against free radicals.


Assuntos
Antocianinas/farmacologia , Antioxidantes/farmacologia , Queratinócitos/efeitos dos fármacos , Lipossomos/química , Polifenóis/farmacologia , Vaccinium myrtillus/química , Antocianinas/química , Antocianinas/isolamento & purificação , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Etanol/química , Humanos , Queratinócitos/citologia , Fosfatidilcolinas/química , Fosfatidilcolinas/isolamento & purificação , Picratos/antagonistas & inibidores , Extratos Vegetais , Polifenóis/isolamento & purificação , Pele/citologia , Pele/efeitos dos fármacos , Colato de Sódio/química , Colato de Sódio/isolamento & purificação , Solventes/química , Glycine max/química
15.
J Photochem Photobiol B ; 117: 157-63, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23123595

RESUMO

The use of photodynamic therapy (PDT) against cutaneous leishmaniasis (CL) based on chloroaluminum phthalocyanine (ClAlPc) is a promissory alternative therapy. The main purpose of this article was to assess the internalization and in vitro phototoxic activities of ClAlPc encapsulated in ultradeformable liposomes (UDL-ClAlPc) in Leishmania parasites and mammalian cells. Cell internalization was determined by fluorescence microscopy, cell and parasite damage by standard MTT or direct microscopic analysis and a phototoxic index (PI) was calculated as the compound activity (IC(50)) at 0 J/cm(2)/IC(50) at 17 J/cm(2). Liposomal and free ClAlPc were internalized by infected and non-infected THP-1 cells and co-localized in the mitochondria. Treatment of UDL-ClAlPc was almost 10 times more photoactive than free ClAlPc on THP-1 cells and promastigotes and intracellular amastigotes of Leishmania chagasi and Leishmania panamensis. Liposomal compounds were active on non-irradiated and irradiated cells however PI higher than 50 were calculated. PI for amphotericin B referential drug were lower than 1.2. Empty liposomes tested at the same lipid concentration of active ClPcAl-liposomes were non-toxic. Upon photodynamic treatment a nonselective-parasite activity against intracellular amastigotes were observed and loss of membrane integrity resulting in a release of parasites was detected. Further studies oriented to evaluate both the state of infection after PDT and the effectiveness of UDL as delivery vehicles of ClAlPc in CL experimental models are required.


Assuntos
Indóis/administração & dosagem , Indóis/farmacologia , Leishmania/efeitos dos fármacos , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Indóis/efeitos adversos , Indóis/metabolismo , Leishmania/fisiologia , Leishmania/efeitos da radiação , Lipossomos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Compostos Organometálicos/efeitos adversos , Compostos Organometálicos/metabolismo , Fosfolipídeos/metabolismo , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/metabolismo , Especificidade da Espécie
16.
J Biomed Nanotechnol ; 7(3): 406-14, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21830481

RESUMO

Curcumin is a polyphenol obtained from the plant Curcuma longa (called turmeric) that displays several pharmacological activities, including anti-inflammatory, antioxidant, antimicrobial and antitumoral activity, but clinical use has been limited by its poor solubility in water and, consequently, minimal systemic bioavailability. We have therefore formulated the drug into nanocarrier systems in an attempt to improve its therapeutic properties. This study evaluates the effect of intraperitoneally administered nanocapsules containing curcumin on subcutaneous melanoma in mice inoculated with B16-F10 cells, and on the cytotoxicity activity against B16-F10 cells in vitro. Phagocytic uptake of formulations was also evaluated upon incubation with macrophage J774 cells by fluorescence microscopy. Lipid and polymeric nanocapsules were prepared by the phase inversion and nanoprecipitation methods, respectively. The uptake of the lipid nanocapsules prepared using Solutol HS15 was significantly reduced in J774 cells. Curcumin, as free drug or as drug-loaded nanocapsules, was administrated at a dose of 6 mg/kg twice a week for 21 days. Free drug and curcumin-loaded nanocapsules significantly reduced tumor volume (P < 0.05 vs. control), but no difference was found in the antitumor activity displayed by lipid and polymeric nanocapsules. This assumption was supported by the in vitro study, in which free curcumin as well as loaded into nanocapsules caused significant reduction of cell viability in a concentration- and time-dependent manner.


Assuntos
Curcumina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanocápsulas , Tensoativos , Animais , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacocinética , Curcumina/uso terapêutico , Estabilidade de Medicamentos , Íons , Lipossomos , Macrófagos/imunologia , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Nanocápsulas/química , Tamanho da Partícula , Tensoativos/química
17.
J Control Release ; 147(3): 368-76, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20727925

RESUMO

Being independent of artificial power sources, self administered sunlight triggered photodynamic therapy could be a suitable alternative treatment for cutaneous leishmaniasis, that avoids the need for injectables and the toxic side effects of pentavalent antimonials. In this work we have determined the in vitro leishmanicidal activity of sunlight triggered photodynamic ultradeformable liposomes (UDL). ZnPc is a hydrophobic Zn phthalocyanine that showed 20% anti-promastigote activity (APA) and 20% anti-amastigote activity (AA) against Leishmania braziliensis (strain 2903) after 15min sunlight irradiation (15J/cm(2)). However, when loaded in UDL as UDL-ZnPc (1.25µM ZnPc-1mM phospholipids) it elicited 100% APA and 80% AA at the same light dose. In the absence of host cell toxicity, UDL and UDL-ZnPc also showed non-photodynamic leishmanicidal activity. Confocal laser scanning microscopy of cryosectioned human skin mounted in non-occlusive Saarbrücken Penetration Model, showed that upon transcutaneous administration ZnPc penetrated nearly 10 folds deeper as UDL-ZnPc than if loaded in conventional liposomes (L-ZnPc). Quantitative determination of ZnPc confirmed that UDL-ZnPc penetrated homogeneously in the stratum corneum, carrying 7 folds higher amount of ZnPc 8 folds deeper than L-ZnPc. It is envisioned that the multiple leishmanicidal effects of UDL-ZnPc could play a synergistic role in prophylaxis or therapeutic at early stages of the infection.


Assuntos
Indóis/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Compostos Organometálicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Luz Solar , Administração Cutânea , Animais , Química Farmacêutica , Chlorocebus aethiops , Composição de Medicamentos , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Indóis/administração & dosagem , Indóis/química , Indóis/metabolismo , Indóis/toxicidade , Isoindóis , Lipossomos , Camundongos , Microscopia Confocal , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Compostos Organometálicos/toxicidade , Tamanho da Partícula , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/toxicidade , Pele/metabolismo , Absorção Cutânea , Fatores de Tempo , Células Vero , Compostos de Zinco
18.
J Control Release ; 103(3): 599-607, 2005 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-15820407

RESUMO

In this work, the hydrophilic, low molecular weight and trypanocidal drug etanidazole (ETZ) was loaded in pH-sensitive liposomes (L-ETZ). Liposomes were made of dioleoyl-phosphatidylethanolamine: cholesteryl hemisuccinate (DOPE:CHEMS, 6:4, mol:mol), of 380 nm size at 14% ETZ/total lipid (w/w) ratio. To follow their uptake and intracellular fate by fluorescence microscopy, pH-sensitive liposomes were loaded with the fluorophore/quencher pair HPTS/DPX. A fast and massive delivery of the liposomal aqueous content into the cytosol of murine J774 macrophages was observed. L-ETZ vesicles were phagocytosed by both uninfected and Trypanosoma cruzi-infected macrophages. A 72% of anti-amastigote activity (AA) was demonstrated on L-ETZ-treated J774 cells, whereas the same dose of free ETZ rendered 0% AA. Endovenous administration of L-ETZ at 14 microg/mouse dose provoked significant decrease in parasitemia levels of T. cruzi-infected mice. Conversely, inoculation of a 180-fold higher dose of free ETZ failed in reducing the number of bloodstream trypomastigotes. Hence, these results point to develop systems, such as L-ETZ, designed for selective delivery of drugs to the cytoplasm of phagocytic cells, thus enhancing the efficacy of molecules considered poorly active.


Assuntos
Etanidazol/administração & dosagem , Etanidazol/farmacologia , Tripanossomicidas/administração & dosagem , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Células Cultivadas , Portadores de Fármacos , Endocitose/efeitos dos fármacos , Excipientes , Concentração de Íons de Hidrogênio , Lipossomos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Microscopia de Fluorescência , Tamanho da Partícula , Fagocitose/efeitos dos fármacos , Trypanosoma cruzi/ultraestrutura , Tripanossomíase/tratamento farmacológico , Tripanossomíase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...