Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 31(4): 1148-55, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12582233

RESUMO

hBRCA1 is involved in 20-45% of inherited breast cancer cases and is implicated in many mechanisms involved in response to DNA damage. To date, BRCA1 orthologs have been characterized in vertebrate genomes only. We have identified the ortholog of BRCA1 in Arabidopsis thaliana. AtBRCA1 is a 5.5 kb part of the locus At4g21070. The corresponding mRNA of 3.5 kb is composed of 14 exons and encodes a 941 amino acid protein (104 kDa). AtBRCA1, which has one N-terminal RING finger, two C-terminal BRCT and the p300/CBP interacting domain, shows a high similarity to hBRCA1 in these motifs and has the same characteristic molecular organization. We have also identified a putative ortholog in rice (OsBRCA1). With 941 and 968 amino acids, respectively, AtBRCA1 and OsBRCA1 are the shortest members of the BRCA1 family, and may represent a plant specificity. AtBRCA1 is expressed ubiquitously in plant tissues, at levels depending on organ type, with highest levels in flower buds and exponentially growing cell cultures. Increase of mRNA levels in all plant tissues 1 h after irradiation with the highest induction level of approximately 150 times for a 100 Gy dose is consistent with a putative role of AtBRCA1 in DNA repair and in cell-cycle control.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteína BRCA1/genética , Northern Blotting , DNA Complementar/química , DNA Complementar/genética , Éxons , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas/genética , Humanos , Íntrons , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Raios X
2.
Plant Physiol ; 118(1): 227-35, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9733542

RESUMO

Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 &mgr;mol m-2 s-1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...