Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1130930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138883

RESUMO

The LIN28B RNA binding protein exhibits an ontogenically restricted expression pattern and is a key molecular regulator of fetal and neonatal B lymphopoiesis. It enhances the positive selection of CD5+ immature B cells early in life through amplifying the CD19/PI3K/c-MYC pathway and is sufficient to reinitiate self-reactive B-1a cell output when ectopically expressed in the adult. In this study, interactome analysis in primary B cell precursors showed direct binding by LIN28B to numerous ribosomal protein transcripts, consistent with a regulatory role in cellular protein synthesis. Induction of LIN28B expression in the adult setting is sufficient to promote enhanced protein synthesis during the small Pre-B and immature B cell stages, but not during the Pro-B cell stage. This stage dependent effect was dictated by IL-7 mediated signaling, which masked the impact of LIN28B through an overpowering stimulation on the c-MYC/protein synthesis axis in Pro-B cells. Importantly, elevated protein synthesis was a distinguishing feature between neonatal and adult B cell development that was critically supported by endogenous Lin28b expression early in life. Finally, we used a ribosomal hypomorphic mouse model to demonstrate that subdued protein synthesis is specifically detrimental for neonatal B lymphopoiesis and the output of B-1a cells, without affecting B cell development in the adult. Taken together, we identify elevated protein synthesis as a defining requirement for early-life B cell development that critically depends on Lin28b. Our findings offer new mechanistic insights into the layered formation of the complex adult B cell repertoire.


Assuntos
Linfócitos B , Células Precursoras de Linfócitos B , Camundongos , Animais
2.
Immunity ; 55(10): 1829-1842.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115337

RESUMO

The adult immune system consists of cells that emerged at various times during ontogeny. We aimed to define the relationship between developmental origin and composition of the adult B cell pool during unperturbed hematopoiesis. Lineage tracing stratified murine adult B cells based on the timing of output, revealing that a substantial portion originated within a restricted neonatal window. In addition to B-1a cells, early-life time-stamped B cells included clonally interrelated IgA plasma cells in the gut and bone marrow. These were actively maintained by B cell memory within gut chronic germinal centers and contained commensal microbiota reactivity. Neonatal rotavirus infection recruited recurrent IgA clones that were distinct from those arising by infection with the same antigen in adults. Finally, gut IgA plasma cells arose from the same hematopoietic progenitors as B-1a cells during ontogeny. Thus, a complex layer of neonatally imprinted B cells confer unique antibody responses later in life.


Assuntos
Imunoglobulina A , Microbiota , Animais , Linfócitos B , Centro Germinativo , Camundongos , Plasmócitos
3.
Sci Immunol ; 4(39)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562190

RESUMO

The ability of B-1 cells to become positively selected into the mature B cell pool, despite being weakly self-reactive, has puzzled the field since its initial discovery. Here, we explore changes in B cell positive selection as a function of developmental time by exploiting a link between CD5 surface levels and the natural occurrence of self-reactive B cell receptors (BCRs) in BCR wild-type mice. We show that the heterochronic RNA binding protein Lin28b potentiates a neonatal mode of B cell selection characterized by enhanced overall positive selection in general and the developmental progression of CD5+ immature B cells in particular. Lin28b achieves this by amplifying the CD19/PI3K/c-Myc positive feedback loop, and ectopic Lin28b expression restores both positive selection and mature B cell numbers in CD19-/- adult mice. Thus, the temporally restricted expression of Lin28b relaxes the rules for B cell selection during ontogeny by modulating tonic signaling. We propose that this neonatal mode of B cell selection represents a cell-intrinsic cue to accelerate the de novo establishment of the adaptive immune system and incorporate a layer of natural antibody-mediated immunity throughout life.


Assuntos
Linfócitos B/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Camundongos , Camundongos Knockout
4.
Oncotarget ; 9(3): 3417-3431, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29423056

RESUMO

The transcription factor ZNF224 plays a key proapoptotic role in chronic myelogenous leukemia (CML), by modulating Wilms Tumor protein 1 (WT1) dependent apoptotic genes transcription. Recently, we demonstrated that Bcr-Abl signaling represses ZNF224 expression in Bcr-Abl positive CML cell lines and in CML patients. Interestingly, Imatinib and second-generation tyrosine kinase inhibitors specifically increase ZNF224 expression. On the other hand, Bcr-Abl positively modulates, via JAK2 activation, the expression of the c-Myc oncogene, which is required for Bcr-Abl oncogenic transformation in CML. Consequently, JAK2 inhibitors represent promising molecular therapeutic tools in CML. In this work, we demonstrate that ZNF224 is a novel transcriptional repressor of c-Myc in CML. We also show that ZNF224 induction by Imatinib and AG490, a specific JAK2 inhibitor, is responsible for the transcriptional repression of c-MYC, thus highlighting the crucial role of the ZNF224/c-Myc axis in Imatinib responsiveness. Interestingly, we also report that ZNF224 is induced by AG490 in Imatinib-resistant CML cells, leading to c-Myc repression and apoptosis induction. These findings suggest that the development of molecular tools able to induce ZNF224 expression could provide promising means to bypass Imatinib resistance in CML.

5.
Eur J Haematol ; 100(3): 229-240, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29240258

RESUMO

The Wilms' tumour gene 1 protein (WT1) is a zinc finger transcription factor found indispensable for foetal development. WT1 has also been implicated in the development of tumours in several organ systems, including acute myeloid leukaemia (AML). Four main WT1 isoforms come from 2 alternative splice events. One alternative splice results in the inclusion or exclusion of 3 amino acids, KTS, between zinc fingers 3 and 4 in the WT1 protein. The KTS insert has been extensively investigated due to the functional implications for DNA and RNA binding. In this review, we provide an overview of the research into the isoforms containing or lacking the KTS insert in leukaemic cells, as well as the research into the binding patterns of the WT1 -KTS and +KTS isoforms to DNA and RNA. Finally, we connect the results of the DNA binding research to the ChIP-CHIP and ChIP-Seq investigations into the global genomic binding of the WT1 protein that have recently been performed.


Assuntos
Processamento Alternativo , DNA de Neoplasias/metabolismo , Genoma Humano , Leucemia Mieloide Aguda/genética , RNA Neoplásico/metabolismo , Proteínas WT1/química , Motivos de Aminoácidos , Sítios de Ligação , Imunoprecipitação da Cromatina , DNA de Neoplasias/genética , Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Neoplásico/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo , Dedos de Zinco
6.
Oncotarget ; 8(50): 87136-87150, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152069

RESUMO

The Wilms' tumor gene 1 (WT1) is recurrently mutated in acute myeloid leukemia. Mutations and high expression of WT1 associate with a poor prognosis. In mice, WT1 cooperates with the RUNX1/RUNX1T1 (AML1/ETO) fusion gene in the induction of acute leukemia, further emphasizing a role for WT1 in leukemia development. Molecular mechanisms for WT1 are, however, incompletely understood. Here, we identify the transcriptional coregulator NAB2 as a target gene of WT1. Analysis of gene expression profiles of leukemic samples revealed a positive correlation between the expression of WT1 and NAB2, as well as a non-zero partial correlation. Overexpression of WT1 in hematopoietic cells resulted in increased NAB2 levels, while suppression of WT1 decreased NAB2 expression. WT1 bound and transactivated the proximal NAB2 promoter, as shown by ChIP and reporter experiments, respectively. ChIP experiments also revealed that WT1 can recruit NAB2 to the IRF8 promoter, thus modulating the transcriptional activity of WT1, as shown by reporter experiments. Our results implicate NAB2 as a previously unreported target gene of WT1 and that NAB2 acts as a transcriptional cofactor of WT1.

7.
Haematologica ; 102(2): 336-345, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27612989

RESUMO

The zinc finger transcription factor Wilms tumor gene 1 (WT1) acts as an oncogene in acute myeloid leukemia. A naturally occurring alternative splice event between zinc fingers three and four, removing or retaining three amino acids (±KTS), is believed to change the DNA binding affinity of WT1, although there are conflicting data regarding the binding affinity and motifs of the different isoforms. Increased expression of the WT1 -KTS isoform at the expense of the WT1 +KTS isoform is associated with poor prognosis in acute myeloid leukemia. We determined the genome-wide binding pattern of WT1 -KTS and WT1 +KTS in leukemic K562 cells by chromatin immunoprecipitation and deep sequencing. We discovered that the WT1 -KTS isoform predominantly binds close to transcription start sites and to enhancers, in a similar fashion to other transcription factors, whereas WT1 +KTS binding is enriched within gene bodies. We observed a significant overlap between WT1 -KTS and WT1 +KTS target genes, despite the binding sites being distinct. Motif discovery revealed distinct binding motifs for the isoforms, some of which have been previously reported as WT1 binding sites. Additional analyses showed that both WT1 -KTS and WT1 +KTS target genes are more likely to be transcribed than non-targets, and are involved in cell proliferation, cell death, and development. Our study provides evidence that WT1 -KTS and WT1 +KTS share target genes yet still bind distinct locations, indicating isoform-specific regulation in transcription of genes related to cell proliferation and differentiation, consistent with the involvement of WT1 in acute myeloid leukemia.


Assuntos
Processamento Alternativo , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Leucemia/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Motivos de Nucleotídeos , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
8.
Biochem Biophys Res Commun ; 482(4): 802-807, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27889611

RESUMO

Wilms' tumor gene 1 (WT1) is a zinc finger transcription factor that has been implicated as an oncogene in leukemia and several other malignancies. When investigating possible gene expression network partners of WT1 in a large acute myeloid leukemia (AML) patient cohort, one of the genes with the highest correlation to WT1 was quinolinate phosphoribosyltransferase (QPRT), a key enzyme in the de novo nicotinamide adenine dinucleotide (NAD+) synthesis pathway. To investigate the possible relationship between WT1 and QPRT, we overexpressed WT1 in hematopoietic progenitor cells and cell lines, resulting in an increase of QPRT expression. WT1 knock-down gave a corresponding decrease in QPRT gene and protein expression. Chromatin-immunoprecipitation revealed WT1 binding to a conserved site in the first intron of the QPRT gene. Upon overexpression in leukemic K562 cells, QPRT conferred partial resistance to the anti-leukemic drug imatinib, indicating possible anti-apoptotic functions, consistent with previous reports on glioma cells. Interestingly, the rescue effect of QPRT overexpression was not correlated to increased NAD + levels, suggesting NAD + independent mechanisms. We conclude that QPRT, encoding a protein with anti-apoptotic properties, is a novel and direct target gene of WT1 in leukemic cells.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Pentosiltransferases/genética , Proteínas WT1/genética , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Genes do Tumor de Wilms , Humanos , Íntrons , Células K562 , Leucemia Mieloide Aguda/metabolismo , NAD/metabolismo , Pentosiltransferases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ativação Transcricional , Proteínas WT1/metabolismo
9.
Leuk Res ; 40: 60-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563595

RESUMO

The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Citarabina/farmacologia , Fatores Reguladores de Interferon/fisiologia , Leucemia/patologia , Regulação para Cima/efeitos dos fármacos , Proteínas WT1/metabolismo , Dedos de Zinco , Linhagem Celular Tumoral , Humanos
10.
Oncotarget ; 6(29): 28223-37, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26320177

RESUMO

The Kruppel-like protein ZNF224 is a co-factor of the Wilms' tumor 1 protein, WT1. We have previously shown that ZNF224 exerts a specific proapoptotic role in chronic myelogenous leukemia (CML) K562 cells and contributes to cytosine arabinoside-induced apoptosis, by modulating WT1-dependent transcription of apoptotic genes. Here we demonstrate that ZNF224 gene expression is down-regulated both in BCR-ABL positive cell lines and in primary CML samples and is restored after imatinib and second generation tyrosine kinase inhibitors treatment. We also show that WT1, whose expression is positively regulated by BCR-ABL, represses transcription of the ZNF224 gene. Finally, we report that ZNF224 is significantly down-regulated in patients with BCR-ABL positive chronic phase-CML showing poor response or resistance to imatinib treatment as compared to high-responder patients. Taken as a whole, our data disclose a novel pathway activated by BCR-ABL that leads to inhibition of apoptosis through the ZNF224 repression. ZNF224 could thus represent a novel promising therapeutic target in CML.


Assuntos
Apoptose/genética , Proteínas de Fusão bcr-abl/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Repressoras/genética , Proteínas WT1/genética , Western Blotting , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas WT1/metabolismo
11.
Biology (Basel) ; 4(1): 41-9, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25585209

RESUMO

KRAB-associated protein 1 (KAP1), the transcriptional corepressor of Kruppel-associated box zinc finger proteins (KRAB-ZFPs), is subjected to multiple post-translational modifications that are involved in fine-tuning of the multiple biological functions of KAP1. In previous papers, we analyzed the KAP1-dependent molecular mechanism of transcriptional repression mediated by ZNF224, a member of the KRAB-ZFP family, and identified the protein arginine methyltransferase PRMT5 as a component of the ZNF224 repression complex. We demonstrated that PRMT5-mediated histone arginine methylation is required to elicit ZNF224 transcriptional repression. In this study, we show that KAP1 interacts with PRMT5 and is a novel substrate for PRMT5 methylation. Also, we present evidence that the methylation of KAP1 arginine residues regulate the KAP1-ZNF224 interaction, thus suggesting that this KAP1 post-translational modification could actively contribute to the regulation of ZNF224-mediated repression.

12.
Curr Genomics ; 14(4): 268-78, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24294107

RESUMO

Zinc finger proteins containing the Kruppel associated box (KRAB-ZFPs) constitute the largest individual family of transcriptional repressors encoded by the genomes of higher organisms. KRAB domain, positioned at the NH2 terminus of the KRAB-ZFPs, interacts with a scaffold protein, KAP-1, which is able to recruit various transcriptional factors causing repression of genes to which KRAB ZFPs bind. The relevance of such repression is reflected in the large number of the KRAB zinc finger protein genes in the human genome. However, in spite of their numerical abundance little is currently known about the gene targets and the physiological functions of KRAB- ZFPs. However, emerging evidence links the transcriptional repression mediated by the KRAB-ZFPs to cell proliferation, differentiation, apoptosis and cancer. Moreover, the fact that KRAB containing proteins are vertebrate-specific suggests that they have evolved recently, and that their key roles lie in some aspects of vertebrate development. In this review, we will briefly discuss some regulatory functions of the KRAB-ZFPs in different physiological and pathological states, thus contributing to better understand their biological roles.

13.
Hum Mol Genet ; 22(9): 1771-82, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23362234

RESUMO

The transcription factor Wilms' tumor gene 1, WT1, is implicated both in normal developmental processes and in the generation of a variety of solid tumors and hematological malignancies. Physical interactions of other cellular proteins with WT1 are known to modulate its function. We previously identified the Krüppel-like zinc-finger protein, ZNF224, as a novel human WT1-associating protein that enhances the transcriptional activation of the human vitamin D receptor promoter by WT1. Here, we have analyzed the effects of WT1-ZNF224 interaction on the expression of apoptosis-regulating genes in the chronic myelogenous leukemia (CML) K562 cell line. The results demonstrated that ZNF224 acts in fine tuning of WT1-dependent control of gene expression, acting as a co-activator of WT1 in the regulation of proapoptotic genes and suppressing WT1 mediated transactivation of antiapoptotitc genes. Moreover, the DNA damaging drug cytosine arabinoside (ara-C) induces expression of ZNF224 in K562 cells and this induction enhances cell apoptotic response to ara-C. These findings suggest that ZNF224 can be a mediator of DNA damage-induced apoptosis in leukemia cells.


Assuntos
Apoptose/genética , Dano ao DNA , Proteínas Repressoras/metabolismo , Proteínas WT1/metabolismo , Imunoprecipitação da Cromatina , Citarabina/efeitos adversos , Proteínas de Ligação a DNA , Repressão Epigenética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células K562 , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas WT1/genética
14.
Int J Biochem Cell Biol ; 43(4): 470-3, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21187159

RESUMO

The Kruppel-like zinc finger protein ZNF224 was originally identified as the transcriptional repressor of the human aldolase A gene. ZNF224 transcriptional repression depends on interaction with the corepressor KAP-1 and the recruitment of enzyme activities modifying chromatin, in accordance with repression mechanism of KRAB-ZFP family. Recently, the arginine methyltransferase PRMT5 was demonstrated to play a crucial role in the transcriptional ZNF224 repressor complex. An alternatively spliced isoform, ZNF255, arises from the ZNF224 gene. ZNF224 and ZNF255 have a distinct pattern of distribution within the cell and display a specific pattern of interaction with different molecular partners. These isoform-specific interactions seem to control different cellular pathways. These findings suggest that ZNF224 is a multifunctional protein and that alternative splicing, sub-cellular compartmentalization and isoform-specific interactions may modulate its activity.


Assuntos
Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Doença de Alzheimer/genética , Animais , Regulação da Expressão Gênica , Humanos , Proteínas Repressoras/genética , Dedos de Zinco
15.
Hum Mol Genet ; 19(18): 3544-56, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20591825

RESUMO

Wilms' tumour suppressor gene, WT1, is mutated/deleted in approximately 15% of Wilms' tumours, highly expressed in the majority of other cancers and is essential for normal embryonic development. The gene encodes multiple isoforms of a zinc-finger (ZF) protein with diverse cellular functions, in particular participating in both transcriptional and post-transcriptional gene regulation. Physical interactions of other cellular proteins with WT1 are known to modulate its function. However, despite the isolation of several WT1-binding proteins, the mechanisms involved in regulating WT1 activities are not clearly understood. In this study, we report the identification of the Krüppel-like ZF protein, ZNF224, as a novel human WT1-associating protein and demonstrate that ZNF224 and its isoform ZNF255 show a specific pattern of interaction with the WT1 splicing variants WT1(-KTS) and WT1(+KTS). These interactions occur in different subcellular compartments and are devoted to control different cellular pathways. The nuclear interaction between ZNF224 and WT1(-KTS) results in an increase in trascriptional activation mediated by WT1, implying that ZNF224 acts as a co-regulator of WT1, whereas, on the contrary, the results obtained for ZNF255 suggest a role for this protein in RNA processing together with WT1. Moreover, our data give the first functional information about the involvement of ZNF255 in a specific molecular pathway, RNA maturation and processing.


Assuntos
Isoformas de Proteínas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas WT1/metabolismo , Linhagem Celular , Humanos , Ligação Proteica , Isoformas de Proteínas/genética , Proteínas Repressoras/genética , Ativação Transcricional , Proteínas WT1/genética , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...