Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 11: 1336612, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533524

RESUMO

The environmental pollution caused by various sources has escalated the climate crisis making the need to establish reliable, intelligent, and persistent environmental monitoring solutions more crucial than ever. Mobile sensing systems are a popular platform due to their cost-effectiveness and adaptability. However, in practice, operation environments demand highly intelligent and robust systems that can cope with an environment's changing dynamics. To achieve this reinforcement learning has become a popular tool as it facilitates the training of intelligent and robust sensing agents that can handle unknown and extreme conditions. In this paper, a framework that formulates active sensing as a reinforcement learning problem is proposed. This framework allows unification with multiple essential environmental monitoring tasks and algorithms such as coverage, patrolling, source seeking, exploration and search and rescue. The unified framework represents a step towards bridging the divide between theoretical advancements in reinforcement learning and real-world applications in environmental monitoring. A critical review of the literature in this field is carried out and it is found that despite the potential of reinforcement learning for environmental active sensing applications there is still a lack of practical implementation and most work remains in the simulation phase. It is also noted that despite the consensus that, multi-agent systems are crucial to fully realize the potential of active sensing there is a lack of research in this area.

2.
Front Robot AI ; 10: 1090174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323641

RESUMO

In this paper, the problem of attitude estimation of a quad-copter system equipped with a multi-rate camera and gyroscope sensors is addressed through extension of a sampling importance re-sampling (SIR) particle filter (PF). Attitude measurement sensors, such as cameras, usually suffer from a slow sampling rate and processing time delay compared to inertial sensors, such as gyroscopes. A discretized attitude kinematics in Euler angles is employed where the gyroscope noisy measurements are considered the model input, leading to a stochastic uncertain system model. Then, a multi-rate delayed PF is proposed so that when no camera measurement is available, the sampling part is performed only. In this case, the delayed camera measurements are used for weight computation and re-sampling. Finally, the efficiency of the proposed method is demonstrated through both numerical simulation and experimental work on the DJI Tello quad-copter system. The images captured by the camera are processed using the ORB feature extraction method and the homography method in Python-OpenCV, which is used to calculate the rotation matrix from the Tello's image frames.

3.
Front Robot AI ; 10: 1138115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866152

RESUMO

On-orbit service spacecraft with redundant actuators need to overcome orbital and attitude coupling when performing proximity maneuvers. In addition, transient/steady-state performance is required to fulfill the user-defined requirements. To these ends, this paper introduces a fixed-time tracking regulation and actuation allocation scheme for redundantly actuated spacecraft. The coupling effect of translational and rotational motions is described by dual quaternion. Based on this, we propose a non-singular fast terminal sliding mode controller to guarantee fixed-time tracking performance in the presence of external disturbances and system uncertainties, where the settling time is only dependent on user-defined control parameters rather than initial values. The unwinding problem caused by the redundancy of dual quaternion is handled by a novel attitude error function. Moreover, optimal quadratic programming is incorporated into null space pseudo-inverse control allocation that ensures the actuation smoothness and never violates the maximum output capability of each actuator. Numerical simulations on a spacecraft platform with symmetric thruster configuration demonstrate the validity of the proposed approach.

4.
Sci Rep ; 13(1): 3125, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813826

RESUMO

The real-time unknown parameter estimation and adaptive tracking control problems are investigated in this paper for a six degrees of freedom (6-DOF) of under-actuated quadrotor unmanned aerial vehicle (UAV). A virtual proportional derivative (PD) controller is designed to maintain the translational dynamics. Two adaptive schemes are developed to handle the attitude dynamics of the UAV with several unknown parameters. In the beginning, a classical adaptive scheme (CAS) using the certainty equivalence principle is proposed and designed. The idea is to design a controller for an ideal situation by assuming the unknown parameters were known. Then the unknown parameters are replaced by their estimation. A theoretical analysis is provided to ensure the trajectory tracking of the adaptive controller. However, an inherent drawback of this scheme is that there is no guarantee for the estimated parameters to converge to the actual values. To address this issue, a new adaptive scheme (NAS) is developed as the next step by adding a continuously differentiable function to the control structure. The proposed technique guarantees handling of the parametric uncertainties with an appropriate design manifold. A rigorous analytical proof, numerical simulation analyses, and experimental validation are presented to show the effectiveness of the proposed control design.

5.
Front Robot AI ; 10: 1291672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283801

RESUMO

A basic assumption in most approaches to simultaneous localization and mapping (SLAM) is the static nature of the environment. In recent years, some research has been devoted to the field of SLAM in dynamic environments. However, most of the studies conducted in this field have implemented SLAM by removing and filtering the moving landmarks. Moreover, the use of several robots in large, complex, and dynamic environments can significantly improve performance on the localization and mapping task, which has attracted many researchers to this problem more recently. In multi-robot SLAM, the robots can cooperate in a decentralized manner without the need for a central processing center to obtain their positions and a more precise map of the environment. In this article, a new decentralized approach is presented for multi-robot SLAM problems in dynamic environments with unknown initial correspondence. The proposed method applies a modified Fast-SLAM method, which implements SLAM in a decentralized manner by considering moving landmarks in the environment. Due to the unknown initial correspondence of the robots, a geographical approach is embedded in the proposed algorithm to align and merge their maps. Data association is also embedded in the algorithm; this is performed using the measurement predictions in the SLAM process of each robot. Finally, simulation results are provided to demonstrate the performance of the proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...