Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(7): 221, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811440

RESUMO

Phenolic compounds are a group of non-essential dietary compounds that are widely recognized for their beneficial health effects, primarily due to their bioactive properties. These compounds which found in a variety of plant-based foods, including fruits, vegetables, and grains are known to possess antimicrobial, antioxidant, anti-inflammatory, and anti-carcinogenic properties. However, the health effects of these compounds depend on their bioaccessibility and bioavailability. In recent years, there has been growing interest in the use of probiotics for promoting human health. Saccharomyces cerevisiae is a yeast with potential probiotic properties and beneficial health effects. Biosorption of phenolic compounds on Saccharomyces cerevisiae cell walls improves their bioaccessibility. This characteristic has also allowed the use of this yeast as a biosorbent in the biosorption process due to its low cost, safety, and easy availability. S. cerevisiae enhances the bioaccessibility of phenolic compounds as a delivery system under in vitro digestion conditions. The reason for this phenomenon is the protective effects of yeast on various phenolic compounds under digestion conditions. This article shows the role of S. cerevisiae yeast on the bioaccessibility of various phenolic compounds and contributes to our understanding of the potential impact of yeasts in human health.


Assuntos
Disponibilidade Biológica , Fenóis , Probióticos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fenóis/metabolismo , Humanos , Probióticos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Parede Celular/metabolismo , Parede Celular/química
2.
FEMS Microbiol Lett ; 369(1)2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36352488

RESUMO

Foodborne and zoonotic viral pathogens are responsible for substantial morbidity and mortality worldwide. These viruses can be transmitted through foods such as dairy products to humans and cause several acute and chronic diseases. This study aimed to investigate the prevalence and profile of different foodborne and zoonotic viruses in raw cow milk samples. We collected 492 raw cow milk samples from local dairy markets in Qazvin, Iran. Then we evaluated the presence of hepatitis A virus, noroviruses, rotavirus, astrovirus, bovine leukaemia virus (BLV) and tick-borne encephalitis virus (TBEV) in samples using conventional and nested reverse transcription-polymerase chain reaction methods. We found that 34.95, 7.72, 25.81, 14.63, 66.86, 12.80 and 21.34% of raw milk samples were contaminated with norovirus GI, norovirus GII, hepatitis A virus, rotavirus, astrovirus, BLV and TBEV viruses, respectively. Interestingly, the samples collected from the city's south area revealed a higher prevalence of foodborne and zoonotic viruses. Astrovirus and its combination with norovirus GI were the most prevalent virus profiles. Also, the highest correlations were observed among the presence of rotavirus and hepatitis A viruses (0.36) and TBEV and norovirus GII (0.31). Considering the prevalence rate and virus profiles of different foodborne and zoonotic viruses in raw milk samples, hygiene practices and the pasteurization process are strongly suggested to be conducted throughout the cow milk production chain and in dairy industries to prevent infections with these pathogens.


Assuntos
Norovirus , Rotavirus , Vírus , Humanos , Animais , Feminino , Bovinos , Leite/química , Prevalência , RNA Viral , Norovirus/genética , Rotavirus/genética , Vírus/genética
3.
Methods Protoc ; 5(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35076547

RESUMO

Murine hepatitis virus (MHV) is a non-human pathogen betacoronavirus that is evolutionarily and structurally related to the human pathogenic viruses SARS-CoV, MERS-CoV, and SARS-CoV-2. However, unlike the human SARS and MERS viruses, MHV requires a biosafety level 2 laboratory for propagating and safe handling, making it a potentially suitable surrogate virus. Despite this utility, few papers discussed the propagation and quantification of MHV using cell lines readily available in biorepositories making their implementations not easily reproducible. This article provides protocols for propagating and quantifying MHV-A59 using the recommended NCTC clone 1469 and clone 929 cell lines from American Type Culture Collection (ATCC). More specifically, the methods detail reviving cells, routine cell passaging, preparing freeze stocks, infection of NCTC clone 1469 with MHV and subsequent harvesting, and plaque assay quantification of MHV using NCTC clone 929 cells. Using these protocols, a BSL-2 laboratory equipped for cell culture work would generate at least 6.0 log plaque-forming units (PFU) per mL of MHV lysate and provide an optimized overlay assay using either methylcellulose or agarose as overlays for the titration of infectious virus particles. The protocols described here are intended to be utilized for persistence and inactivation studies of coronaviruses.

4.
J Food Prot ; 84(12): 2092-2098, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324675

RESUMO

ABSTRACT: Human norovirus (HuNoV) is the leading cause of foodborne illness outbreaks and the second most common cause of waterborne infections in the United States. The goal of this research was to investigate the antiviral activity of chitosan microparticles (CMs) against HuNoV GII.4 Sydney and its cultivable surrogate Tulane virus (TuV) in suspensions mimicking fecally contaminated water. CMs were prepared by cross-linking chitosan molecules with sodium sulfate, and the antiviral activity of CMs was assessed with an infectivity assay on TuV and by quantitative reverse transcription PCR on TuV and HuNoV. A 3% CM suspension in phosphate-buffered saline (pH 7.2) bound to TuV particles but had a negligible impact on virus infectivity (P > 0.05). A 10-min contact time resulted in a 1.5-log reduction in genomic copies per mL of TuV and HuNoV in fecal suspensions (P < 0.05). Despite the negligible impact on viral infectivity, CMs can moderately bind to infectious virus particles and help purify environmental water by removing these particles. In this study, TuV was a suitable surrogate for HuNoV with similar log reductions in fecal suspension. These findings highlight the potential application of CM as a novel treatment to minimize the spread of waterborne viral pathogens.


Assuntos
Quitosana , Doenças Transmitidas por Alimentos , Norovirus , Fezes , Humanos , Norovirus/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
J Food Sci ; 86(6): 2398-2409, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33928640

RESUMO

Tuna (Thunnus albacares) and mahi-mahi (Coryphaena hippurus) are two major fish species responsible for scombroid poisoning in the United States. The purpose of this research was to develop a low-cost and easily operated colorimetric strip method for the rapid determination of spoilage degree via amine response in mahi-mahi and tuna. The color strip method was developed by investigating different types of dyes, filter papers, sample volume, water bath temperature, and other parameters. Ultimately rose bengal and bromophenol blue (BPB) dyes were chosen. These two dyes produced standard curves with good linearity (0-50 mg/L for the total biogenic amines) and uniformity of color change. The r2 values for the standard curves of the rose Bengal and BPB were 0.9535 and 0.8883, respectively. Significant positive Pearson correlations coefficients (r) between the volatile biogenic amine levels detected by these two colorimetric strip methods with increasing spoilage grade of mahi-mahi (rose bengal: r = 0.8907, p < 0.0001; BPB: r = 0.8711, p < 0.0001) and tuna (rose bengal: r = 0.8351, p < 0.0001; BPB: r = 0.7362, p = 0.0001) were observed. For mahi-mahi, the volatile amines detected by the colorimetric strips correlated positively with increasing levels of eight biogenic amines, free alanine, four aldehydes, isoamyl alcohol, two ketones, and dimethyl disulfide. For tuna, the results determined by colorimetric strips positively correlated with three biogenic amines, three free amino acids, four aldehydes, and ethanol. The two validated colorimetric strips could rapidly monitor the spoilage degree of mahi-mahi and tuna at low-cost. PRACTICAL APPLICATION: Rose bengal strips and BPB strips were developed as a rapid, objective, analytical method that can serve as an alternative to sensory grading methods. These two nonspecific colorimetric strip methods provided good linear response and uniformity of color change. Volatile amine levels in fish determined by these colorimetric strip methods were statistically significant and positively correlated with the spoilage grade of fish.


Assuntos
Aminas Biogênicas/análise , Colorimetria/métodos , Peixes/metabolismo , Alimentos Marinhos/análise , Atum/metabolismo , Compostos Orgânicos Voláteis/análise , Animais
6.
Viruses ; 12(4)2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325896

RESUMO

Human noroviruses are the leading cause of foodborne gastroenteritis worldwide and disease outbreaks have been linked to contaminated surface waters as well as to produce consumption. Noroviruses are extremely stable in water and their presence is being detected with increasing frequency, yet there are no viable methods for reducing norovirus contamination in environmental water. Despite this, there is little knowledge regarding the physical and chemical factors that influence the environmental persistence of this pathogen. This study evaluated the impact of common chemical and physical properties of surface water on the stability of murine norovirus and examined the effect of food-safe chitosan microparticles on infectivity of two human norovirus surrogates. While chemical additives had a minor impact on virus survival, chitosan microparticles significantly reduced infectious titers of both murine norovirus and MS2 bacteriophage.


Assuntos
Antivirais/farmacologia , Infecções por Caliciviridae/virologia , Gastroenterite/virologia , Norovirus/efeitos dos fármacos , Norovirus/fisiologia , Animais , Antivirais/uso terapêutico , Biomarcadores , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/tratamento farmacológico , Linhagem Celular , Terapia Combinada , Desenvolvimento de Medicamentos , Gastroenterite/diagnóstico , Gastroenterite/tratamento farmacológico , Humanos , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Temperatura , Ensaio de Placa Viral
7.
J Food Sci ; 84(3): 481-489, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30775780

RESUMO

Alcohols, aldehydes, ketones, amines, and sulfur compounds are essential aroma compounds related to fish flavor and spoilage. Gas chromatography-mass spectrometry (GC-MS) is an instrument that is widely used to identify and quantify volatile and semi-volatile compounds in fish products. In this research, a simple and accurate GC-MS method was developed to determine the aroma profile of mahi-mahi and tuna for chemical indicators of spoilage. In the developed GC-MS method, trichloroacetic acid (TCA) solution was used to extract analytes from homogenized fish samples. The purge and trap system was used for sample introduction, and the GC-MS with an RTX-Volatile Amine column was able to separate compounds without a derivatization procedure. The created purge and trap gas chromatography-mass spectrometry (PT-GC-MS) method could identify and quantify twenty aroma compounds in mahi-mahi (Coryphaena hippurus) and 16 volatile compounds in yellowfin tuna (Thunnus albacares) associated with fish spoilage. The amines (dimethylamine, trimethylamine, isobutylamine, 3-methylbutylamine, and 2-methylbutanamine), alcohols (2-ethylhexanol, 1-penten-3-ol and isoamyl alcohol, ethanol), aldehydes (2-methylbutanal, 3-methylbutanal, benzaldehyde), ketones (acetone, 2,3-butanedione, 2-butanone, acetoin), and dimethyl disulfide strongly statistically correlated with poorer quality tuna and mahi-mahi and were considered as the key spoilage indicators. PRACTICAL APPLICATION: A simplified and rapid purge and trap gas chromatography-mass spectrometry (PT-GC-MS) method developed in this research was able to identify and quantify important spoilage compounds in mahi-mahi and yellowfin tuna. This method is an efficient analytical method for determining volatile profiles of fish samples for industry analytical labs or the government. The identified analytical quality markers can be used to monitor the spoilage level of tuna and mahi-mahi.


Assuntos
Produtos Pesqueiros/análise , Peixes , Contaminação de Alimentos/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Álcoois/análise , Aldeídos/análise , Aminas/análise , Animais , Dissulfetos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Cetonas/análise , Atum
8.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28600317

RESUMO

Human norovirus (NoV) is the leading cause of acute gastroenteritis worldwide. Persistence on surfaces and resistance to many conventional disinfectants contribute to widespread transmission of norovirus. We examined the efficacy of neutral electrolyzed water (NEW; pH 7) for inactivation of human NoV GII.4 Sydney in suspension (ASTM method 1052-11) and on stainless steel surfaces (ASTM method 1053-11) with and without an additional soil load. The impact of the disinfectant on viral capsid was assessed using reverse transcriptase quantitative PCR (RT-qPCR; with an RNase pretreatment), SDS-PAGE, transmission electron microscopy, and a histo-blood group antigen (HBGA) receptor-binding assay. These studies were done in parallel with those using Tulane virus (TuV), a cultivable human NoV surrogate. Neutral electrolyzed water at 250 ppm free available chlorine produced a 4.8- and 0.4-log10 reduction in NoV genome copy number after 1 min in suspension and on stainless steel, respectively. Increasing the contact time on surfaces to 5, 10, 15, and 30 min reduced human NoV genomic copies by 0.5, 1.6, 2.4, and 5.0 log10 and TuV infectious titers by 2.4, 3.0, 3.8, and 4.1 log10 PFU, respectively. Increased soil load effectively eliminated antiviral efficacy regardless of testing method and virus. Exposure to NEW induced a near complete loss of receptor binding (5 ppm, 30 s), degradation of VP1 major capsid protein (250 ppm, 5 min), and increased virus particle aggregation (150 ppm, 30 min). Neutral electrolyzed water at 250 ppm shows promise as an antinoroviral disinfectant when used on precleaned stainless steel surfaces.IMPORTANCE Norovirus is the leading cause of acute viral gastroenteritis worldwide. Transmission occurs by fecal-oral or vomitus-oral routes. The persistence of norovirus on contaminated environmental surfaces exacerbates its spread, as does its resistance to many conventional disinfectants. The purpose of this research was to evaluate the antinoroviral efficacy of neutral electrolyzed water (NEW), a novel chlorine-based disinfectant that can be used at reduced concentrations, making it more environmentally friendly and less corrosive than bleach. An industrial-scale electrochemical activation device capable of producing relatively stable electrolyzed water at a wide pH range was used in this study. Experiments showed that 250 ppm NEW effectively eliminated (defined as a 5-log10 reduction) human norovirus GII.4 Sydney (epidemic strain) on clean stainless steel surfaces after a 30-min exposure. Supporting studies showed that, like bleach, NEW causes inactivation by disrupting the virus capsid. This product shows promise as a bleach alternative with antinoroviral efficacy.


Assuntos
Desinfecção/métodos , Gastroenterite/virologia , Norovirus/efeitos dos fármacos , Norovirus/fisiologia , Inativação de Vírus/efeitos dos fármacos , Água/química , Água/farmacologia , Desinfecção/instrumentação , Eletrólise , Humanos , Norovirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Front Microbiol ; 8: 1031, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642746

RESUMO

Human norovirus (NoV) is the leading cause of foodborne illnesses in the United States. Norovirus is shed in high numbers in the feces and vomitous of infected individuals. Contact surfaces contaminated with bodily fluids harboring infectious virus particles serve as vehicles for pathogen transmission. Environmental stability of NoV and its resistance to many conventional disinfectants necessitate effective inactivation strategies to control the spread of virus. We investigated the efficacy of two commercial disinfectants, hydrogen peroxide (7.5%) and a chlorine dioxide (0.2%)-surfactant-based product using a fogging delivery system against human NoV GI.6 and GII.4 Sydney strains as well as the cultivable surrogate, feline calicivirus (FCV) dried on stainless steel coupons. Log10 reductions in human NoV and FCV were calculated utilizing RNase RT-qPCR and infectivity (plaque) assay, respectively. An improved antiviral activity of hydrogen peroxide as a function of disinfectant formulation concentration in the atmosphere was observed against both GII.4 and FCV. At 12.4 ml/m3, hydrogen peroxide achieved a respective 2.5 ± 0.1 and 2.7 ± 0.3 log10 reduction in GI.6 and GII.4 NoV genome copies, and a 4.3 ± 0.1 log10 reduction in infectious FCV within 5 min. At the same disinfectant formulation concentration, chlorine dioxide-surfactant-based product resulted in a respective 1.7 ± 0.2, 0.6 ± 0.0, and 2.4 ± 0.2 log10 reduction in GI.6, GII.4, and FCV within 10 min; however, increasing the disinfectant formulation concentration to 15.9 ml/m3 negatively impacted its efficacy. Fogging uniformly delivered the disinfectants throughout the room, and effectively decontaminated viruses on hard-to-reach surfaces. Hydrogen peroxide delivered by fog showed promising virucidal activity against FCV by meeting the United States EPA 4-log10 reduction criteria for an anti-noroviral disinfectant; however, fogged chlorine dioxide-surfactant-based product did not achieve a 4-log10 inactivation. Future investigation aimed at optimizing decontamination practices is warranted.

10.
Appl Environ Microbiol ; 81(18): 6436-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162869

RESUMO

Pathogenic enteric viruses are responsible for a wide range of infections in humans, with diverse symptoms. Raw and partially treated wastewaters are major sources of environmental contamination with enteric viruses. We monitored a municipal secondary wastewater treatment plant (New Orleans, LA) on a monthly basis for norovirus (NoV) GI and GII and enterovirus serotypes using multiplex reverse transcription-quantitative PCR (RT-qPCR) and microbial indicators of fecal contamination using standard plating methods. Densities of indicator bacteria (enterococci, fecal coliforms, and Escherichia coli) did not show monthly or seasonal patterns. Norovirus GII was more abundant than GI and, along with enterovirus serotypes, increased in influent during fall and spring. The highest NoV GI density in influent was in the fall, reaching an average of 4.0 log10 genomic copies/100 ml. Norovirus GI removal (0.95 log10) was lower than that for GII, enterovirus serotypes, and male-specific coliphages (1.48 log10) or for indicator bacteria (4.36 log10), suggesting higher resistance of viruses to treatment. Male-specific coliphages correlated with NoV GII densities in influent and effluent (r = 0.48 and 0.76, respectively) and monthly removal, indicating that male-specific coliphages can be more reliable than indicator bacteria to monitor norovirus GII load and microbial removal. Dominant norovirus genotypes were classified into three GI genotypes (GI.1, GI.3, and GI.4) and four GII genotypes (GII.3, GII.4, GII.13, and GII.21), dominated by GI.1 and GII.4 strains. Some of the seasonal and temporal patterns we observed in the pathogenic enteric viruses were different from those of epidemiological observations.


Assuntos
Enterovirus/isolamento & purificação , Norovirus/isolamento & purificação , Águas Residuárias/microbiologia , Águas Residuárias/virologia , Microbiologia da Água , Bactérias/genética , Bactérias/isolamento & purificação , Colífagos/genética , Enterovirus/classificação , Enterovirus/genética , Monitoramento Ambiental , Fezes/microbiologia , Fezes/virologia , Genoma Viral , Genótipo , Humanos , Nova Orleans , Norovirus/classificação , Norovirus/genética , Reação em Cadeia da Polimerase , RNA Viral/genética , Estações do Ano , Sorogrupo , Vírus/genética , Vírus/isolamento & purificação , Purificação da Água
11.
J Food Sci ; 80(5): M1075-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25899121

RESUMO

Noroviruses are the most common causative agent of viral gastroenteritis in humans, and are responsible for major foodborne illnesses in the United States. Filter-feeding molluscan shellfish exposed to sewage-contaminated waters bioaccumulate viruses, and if consumed raw, transmit the viruses to humans and cause illness. We investigated the occurrence of norovirus GI and GII and microbial indicators of fecal contamination in the eastern oysters (Crassostrea virginica) and water from commercial harvesting areas along the Louisiana Gulf Coast (January to November of 2013). Microbial indicators (aerobic plate count, enterococci, fecal coliforms, Escherichia coli, male-specific coliphages, and somatic coliphages) were detected at the densities lower than public health concerns. Only one oyster sample was positive for norovirus GII at 3.5 ± 0.2 log10 genomic equivalent copies/g digestive tissues. A stool specimen obtained from an infected individual associated with a norovirus outbreak and the suspected oysters (Cameron Parish, La., area 30, January 2013) were also analyzed. The norovirus strain in the stool belonged to GII.4 Sydney; however, the oysters were negative and could not be linked. In general, no temporal trend was observed in the microbial indicators. Low correlation among bacterial indicators was observed in oysters. Strongest correlations among microbial indicators were observed between enterococci and fecal coliforms (r = 0.63) and between enterococci and E. coli (r = 0.64) in water (P < 0.05); however, weak correlations were found in oysters (r < 0.45) and between oysters and harvest water (r ≤ 0.36, P > 0.05). Our results emphasize the need for regular monitoring of pathogenic viruses in commercial oyster harvesting areas to reduce the risks of viral gastroenteritis incidences.


Assuntos
Crassostrea/microbiologia , Crassostrea/virologia , Norovirus/isolamento & purificação , Microbiologia da Água , Animais , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Enterobacteriaceae/isolamento & purificação , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Doenças Transmitidas por Alimentos , Gastroenterite/virologia , Golfo do México , Humanos , Louisiana , Esgotos/microbiologia , Frutos do Mar/microbiologia , Vírus , Poluição da Água
12.
J Food Prot ; 76(5): 812-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23643122

RESUMO

Cold-smoked salmon (CSS) is a potentially hazardous ready-to-eat food product due to the high risk of contamination with Listeria monocytogenes and lack of a listericidal step. We investigated the antilisterial property of liquid smokes (LS) against Listeria innocua ATCC 33090 (surrogate to L. monocytogenes) as a potential supplement to vacuum-packaged CSS. A full-strength LS (Code 10-Poly), and three commercially refined fractions (AM-3, AM-10, and 1291) having less color and flavor (lower content of phenols and carbonyl-containing compounds) were tested. In vitro assays showed strong inhibition for all LS except for 1291. The CSS strips were surface coated with AM-3 and AM-10 at 1% LS (vol/wt) with an L-shaped glass rod and then inoculated with L. innocua at 3.5 log CFU/g, vacuum packaged, and stored at 4°C. The LS did not completely eliminate L. innocua but provided a 2-log reduction by day 14, with no growth up to 35 days of refrigerated storage. A simple difference sensory test by 180 untrained panelists showed the application of AM-3 did not significantly influence the overall sensorial quality of CSS. In essence, the application of the refined LS as an antilisterial additive to CSS is recommended.


Assuntos
Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/métodos , Listeria monocytogenes/crescimento & desenvolvimento , Alimentos Marinhos/normas , Fumaça , Animais , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Manipulação de Alimentos/normas , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Conservação de Alimentos/normas , Humanos , Salmão , Alimentos Marinhos/microbiologia , Paladar , Vácuo
13.
Food Sci Nutr ; 1(1): 102-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24804019

RESUMO

The objective of this study was to determine important chemical characteristics of a full-strength liquid smoke, Code 10-Poly, and three refined liquid smoke products (AM-3, AM-10 and 1291) commercially available (Kerry Ingredients and Flavors, Monterey, TN). The pH of the products were significantly different (P < 0.05) and ranged from 2.3 (Code 10-Poly) to 5.7 (1291). The pH was inversely correlated with titratable acidity (R (2) = 0.87), which was significantly different (P < 0.05) among products ranging from 10.3% acetic acid (Code 10-Poly) to 0.7% acetic acid (1291). Total phenol content was quantified using the Gibbs reaction; the only liquid smoke containing appreciable level of phenolic compounds was Code 10-Poly at 3.22 mg mL(-1). Gas chromatography-mass spectrometry (GC-MS) analysis of liquid smoke dichloromethane extracts revealed that carbonyl-containing compounds were major constituents of all products, in which 1-hydroxy-2-butanone, 2(5H)-furanone, propanal and cyclopentenone predominated. Organic acids were detected by GC-MS in all extracts and correlated positively (R (2) = 0.98) with titratable acidity. The GC-MS data showed that phenolic compounds constituted a major portion of Code 10-Poly, and were detected only in trace quantities in 1291. The refined liquid smokes had lighter color, lower acidity, and reduced level of carbonyl-containing compounds and organic acids. Our study revealed major differences in pH, titratable acidity, total phenol content, color and chemical make-up of the full-strength and refined liquid smokes. The three refined liquid smoke products studied have less flavor and color active compounds, when compared with the full-strength product. Furthermore, the three refined products studied have unique chemical characteristics and will impart specific sensorial properties to food systems. Understanding the chemical composition of liquid smokes, be these refined or full-strength products, is an important step to establish their functions and appropriate use in food systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...