Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049766

RESUMO

Anthracycline doxorubicin (DOX) is still widely used as a chemotherapeutic drug for some solid tumors. Although DOX is highly effective, its side effects are limiting factors, such as cardio, nephro and hepatotoxicity. As such, approaches used to mitigate these adverse effects are highly encouraged. Omega 3 (ω-3), which is a class of long-chain polyunsaturated fatty acids, has been shown to have anti-inflammatory and antioxidant effects in preclinical bioassays. Thus, we evaluated the protective effects of ω-3 supplementation on hepatotoxicity and nephrotoxicity induced by multiple DOX administrations in rodents. Male Wistar rats (10 rats/group) were treated daily with ω-3 (400 mg/kg/day) by gavage for six weeks. Two weeks after the first ω-3 administration, the rats received DOX (3.5 mg/kg, intraperitoneal, 1×/week) for four weeks. DOX treatment reduced body weight gain increased systemic genotoxicity and caused liver-related (increase in serum ALT levels, thickness of the Glisson's capsule, compensatory proliferation and p65 levels) and kidney-related (increase in serum urea and creatinine levels, and incidence of tubular dilatation) deleterious outcomes. In contrast, ω-3 supplementation was safe and abrogated the DOX-related enhancement of systemic genotoxicity, serum urea and creatinine levels. Furthermore, ω-3 intervention reduced by 50% the incidence of kidney histological lesions while reducing by 40-50% the p65 protein level, and the proliferative response in the liver induced by DOX. Our findings indicate that ω-3 intervention attenuated the DOX-induced deleterious effects in the liver and kidney. Therefore, our findings may inspire future mechanistical investigations and clinical interventions with ω-3 on the reported outcomes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Rim , Ratos , Masculino , Animais , Ratos Wistar , Creatinina , Doxorrubicina/farmacologia , Suplementos Nutricionais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ureia/farmacologia , Estresse Oxidativo
2.
Clin Nutr ESPEN ; 54: 73-80, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36963901

RESUMO

Cardiovascular diseases (CVD) are the major cause of global mortality, accounting for 31% of deaths worldwide. Healthy eating habits based on the consumption of bioactive molecules present in plant-based diets can contribute to the prevention of CVD. In this context, the consumption of common beans (Phaseolus vulgaris L.) is relevant. There are several species of beans, all of which provide proteins, carbohydrates, dietary fiber, vitamins, minerals, and phenolic compounds. More recently, the complexity of phytochemical components has expanded, including the role of antinutritional factors in nutrient bioavailability and immune responses. Experimental and clinical studies have shown that the consumption of beans results in less food consumption, control of body weight, and improvement of metabolic biochemical parameters. Thus, the consumption of beans is associated with a decrease in CVD risk factors. To date, there have been no interventional studies assessing CVD outcomes, such as hospitalization, infarction, and mortality, in the context of bean consumption. Furthermore, studies on the effect of bean consumption on metabolomics and intestinal microbiota are lacking. The purpose of this review is to explore the nutritional properties of beans and discuss the main effects of the consumption of beans on cardiovascular health. In conclusion, eating habits based on the consumption of bioactive molecules present in beans can contribute to the prevention of cardiovascular disease. Furthermore, there is a large gap in the literature regarding the consumption of beans associated with clinical outcomes, such as hospitalization and mortality.


Assuntos
Doenças Cardiovasculares , Phaseolus , Humanos , Doenças Cardiovasculares/prevenção & controle , Phaseolus/metabolismo , Minerais , Valor Nutritivo , Fibras na Dieta
3.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36005418

RESUMO

AIM: Evaluate the influence of doxycycline, an anti-inflammatory and matrix metalloproteinase (MMP) inhibitor, on the attenuation of chronic doxorubicin-induced cardiotoxicity in rats. METHODS: We allocated male Wistar rats into four groups: control (C), doxorubicin (D), doxycycline (inhibitor of MMP, IM), and Dox + doxycycline (DIM). Groups IM and DIM received doxycycline (5 mg/kg, IP) once a week for 4 weeks. In addition, 48 h after every doxycycline injection, groups D and DIM received Dox (5 mg/kg, IP). We performed echocardiogram and evaluated TIMP-4 and collagen I protein expression, MMP-2 activity, and oxidative stress and myocardial metabolism. RESULTS: Doxorubicin promotes left atrium (LA) and left ventricle (LV) dilatation and decreases in LV fractional shortening, which was improved by doxycycline. Moreover, doxycycline attenuated the LV cardiomyocyte hypertrophy and collagen type I expression. Doxorubicin increased phosphofructokinase and decreased beta-hydroxyacyl Co-A dehydrogenase, pyruvate dehydrogenase, citrate synthase, and ATP synthase activity, which was partially attenuated by doxycycline. Lastly, doxycycline improved antioxidant enzyme activity in the DIM group. CONCLUSION: Doxorubicin increases oxidative stress and promotes changes in myocardial energy metabolism, accompanied by structural and functional changes. Doxycycline attenuated the doxorubicin-induced cardiotoxicity, at least in part, through changes in myocardial energy metabolism.

4.
Photobiomodul Photomed Laser Surg ; 38(12): 708-712, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32598231

RESUMO

Background: Photobiomodulation therapy (PBMT) and creatine (Cr) intake have been used in conjunction with heavy training, but little is known about their possible effects during a long-term training program. Objective: We assessed long-term use of PBMT and Cr in an exercise training program. Methods: Twenty-five male Wistar rats weighing ∼300 g were randomly allocated to one of five groups: a nontraining control group, a training group, a training group receiving Cr, a training group receiving PBMT, and a training group receiving both PBMT and Cr. The training program consisted of 12 weeks of daily swimming training. PBMT was delivered in six points with a laser device (808 nm, 100 mW, 30 sec per point of irradiation, 3 J, 75 J/cm2). Results: All training groups showed significantly higher peak force and longer time to 50% decay of force, and lower creatine kinase (CK) levels than the nontraining control group, thus confirming the benefit of the training program. In all outcomes related to muscle performance, the groups receiving PBMT with or without Cr supplement performed significantly better (p < 0.05) peak force and time of force decay during an electrical stimulation protocol than all the other groups. In addition, CK levels were also significantly lower for the PBMT groups than for the other groups. Conclusions: We conclude that PBMT alone or in conjunction with Cr supplement during a 12-week training program resulted in significantly better muscle performance and lower levels of CK, a biochemical marker of muscle damage.


Assuntos
Treino Aeróbico , Terapia com Luz de Baixa Intensidade , Animais , Creatina , Humanos , Masculino , Músculo Esquelético , Ratos , Ratos Wistar
5.
Lasers Med Sci ; 34(2): 255-262, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29992491

RESUMO

Physical exercise generates several benefits in a short time in patients with diabetes mellitus. However, it can increase the chances of muscle damage, a serious problem for diabetic patients. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat these injuries, despite the serious adverse effects. In this way, photobiomodulation therapy (PBMT) with low-level laser therapy (LLLT) and/or light emitting diode therapy (LEDT) can be used as an alternative in this case. However, its efficacy in tissue repair of trauma injuries in diabetes mellitus until now is unknown, as well as the combination between PBMT and NSAIDs. The objective of the present study was to evaluate the effects of NSAIDs and PBMT applied alone or combined on functional and biochemical aspects, in an experimental model of muscle injury through controlled trauma in diabetic rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm2; 3 J; 107.1 J/cm2, 30 s), diclofenac sodium for topical use (1 g), or combination of them. Our results demonstrated that PBMT + diclofenac, and PBMT alone reduced the gene expression of cyclooxygenase-2 (COX-2) at all assessed times as compared to the injury and diclofenac groups (p < 0.05 and p < 0.01 respectively). The diclofenac alone showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). Prostaglandin E2 levels in blood plasma demonstrated similar results to COX2. In addition, we observed that PBMT + diclofenac and PBMT alone showed significant improvement compared with injury and diclofenac groups in functional analysis at all time points. The results indicate that PBMT alone or in combination with diclofenac reduces levels of inflammatory markers and improves gait of diabetic rats in the acute phase of muscle injury.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/radioterapia , Diclofenaco/administração & dosagem , Diclofenaco/uso terapêutico , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Administração Tópica , Animais , Terapia Combinada , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Dinoprostona/sangue , Regulação da Expressão Gênica , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/efeitos da radiação , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...