Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Immunol ; 85: 9-17, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28192730

RESUMO

Optineurin (Optn) is an adaptor protein with homology to NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex. Dysregulation of Optn has been linked to neurodegenerative, autoimmune and bone diseases. Optn shares a high degree of homology with NEMO, but is not part of the same high-molecular weight complex containing IKKα and IKKß. Despite its homology with NEMO and the fact that it has been the subject of extensive study in several cell types, there are no published studies addressing the role of Optn during T cell activation. Here we demonstrate that ectopic expression of Optn down-regulates TCR-induced NF-κB activation and TNF-α production, in a manner dependent on ubiquitin-binding. Conversely, knock-down of Optn enhances NF-κB activation and the production of TNF-α. Consistent with a negative regulatory role for this protein, we observed transient loss of Optn after TCR stimulation in both cell lines and in primary murine T cells. The acute loss of Optn appears to be due to both protein degradation and exocytosis, the latter via activation-induced exosomes. This study therefore provides novel information regarding the role of Optn during TCR activation, suggesting the possible importance of Optn during inflammation and/or autoimmune diseases.


Assuntos
Proteínas do Olho/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Fator de Transcrição TFIIIA/imunologia , Animais , Western Blotting , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas do Olho/metabolismo , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Masculino , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Methods Mol Biol ; 1186: 87-102, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25149305

RESUMO

Exosomes are membrane nanovesicles (approximately <120 nm in size) released by most, if not all, living cells and in particular by leukocytes. They originate within the endocytic compartment by invagination of the endosome membrane. Therefore, they have a different biogenesis and molecular composition than microvesicles (>0.2 µm) shed from the plasma membrane. Although the functions of exosomes in vivo are beginning to be elucidated, increasing evidence suggests that exosomes constitute a mechanism of cell-to-cell communication, transferring antigens, proteins, mRNAs, and noncoding RNAs among cells. Interestingly, effector T cells including cytotoxic T lymphocytes (CTLs) release death-inducing molecules of the TNF superfamily through exosomes contained in their cytotoxic granules. The present chapter provides basic protocols for purification of exosomes secreted by CTLs.


Assuntos
Exossomos/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Apoptose/imunologia , Transporte Biológico , Comunicação Celular , Centrifugação com Gradiente de Concentração/métodos , Grânulos Citoplasmáticos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/citologia
3.
Methods Mol Biol ; 1024: 19-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23719940

RESUMO

Exosomes are extremely small (<100 nm) membrane vesicles, generated in the endocytic compartment that are released to the extracellular milieu by living cells. Although the biological function of exosomes in vivo remains unclear, they seem to function as mechanisms of cell-to-cell communication for horizontal transfer of proteins, antigens, prions, morphogens, mRNA, and noncoding regulatory RNAs, including microRNAs (miRNAs) (also known as exosome-shuttle miRNAs). Dendritic cells (DCs), the most potent professional antigen-presenting leukocytes of the immune system, release relatively high levels of exosomes and also interact with free exosomes present in the extracellular space. Therefore, DCs constitute a good model for the analysis of exosome-shuttle miRNAs and their horizontal propagation between cells. This chapter provides basic protocols for purification of exosomes released by mouse bone marrow-derived DCs, analysis of their miRNA content, and assessment of the function of exosome-shuttle miRNAs, once they are transferred to target/acceptor DCs.


Assuntos
Células da Medula Óssea/química , Células Dendríticas/química , Exossomos/química , MicroRNAs/isolamento & purificação , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Comunicação Celular , Meios de Cultivo Condicionados/química , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Eletroforese em Gel de Poliacrilamida , Exossomos/genética , Exossomos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Transporte de RNA , Ultracentrifugação
4.
Blood ; 119(3): 756-66, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22031862

RESUMO

Dendritic cells (DCs) are the most potent APCs. Whereas immature DCs down-regulate T-cell responses to induce/maintain immunologic tolerance, mature DCs promote immunity. To amplify their functions, DCs communicate with neighboring DCs through soluble mediators, cell-to-cell contact, and vesicle exchange. Transfer of nanovesicles (< 100 nm) derived from the endocytic pathway (termed exosomes) represents a novel mechanism of DC-to-DC communication. The facts that exosomes contain exosome-shuttle miRNAs and DC functions can be regulated by exogenous miRNAs, suggest that DC-to-DC interactions could be mediated through exosome-shuttle miRNAs, a hypothesis that remains to be tested. Importantly, the mechanism of transfer of exosome-shuttle miRNAs from the exosome lumen to the cytosol of target cells is unknown. Here, we demonstrate that DCs release exosomes with different miRNAs depending on the maturation of the DCs. By visualizing spontaneous transfer of exosomes between DCs, we demonstrate that exosomes fused with the target DCs, the latter followed by release of the exosome content into the DC cytosol. Importantly, exosome-shuttle miRNAs are functional, because they repress target mRNAs of acceptor DCs. Our findings unveil a mechanism of transfer of exosome-shuttle miRNAs between DCs and its role as a means of communication and posttranscriptional regulation between DCs.


Assuntos
Comunicação Celular , Células Dendríticas/metabolismo , Endossomos/metabolismo , Exossomos/genética , MicroRNAs/fisiologia , Animais , Apresentação de Antígeno , Biomarcadores/metabolismo , Citosol/metabolismo , Células Dendríticas/citologia , Exossomos/metabolismo , Perfilação da Expressão Gênica , Fusão de Membrana , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
5.
Immunol Res ; 50(2-3): 113-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21717079

RESUMO

NF-κB family transcription factors are a common downstream target for inducible transcription mediated by many different cell-surface receptors, especially those receptors involved in inflammation and adaptive immunity. It is now clear that different classes of receptors employ different proximal signaling strategies to activate the common NF-κB signaling components, such as the IKK complex. For antigen receptors expressed by T and B cells, this pathway requires a complex of proteins including the proteins Carma1, Bcl10, and Malt1. Here, we discuss some of what is known about regulation of these proteins downstream of TCR/CD3 and co-stimulatory CD28 signaling. We also discuss another unique aspect of TCR-mediated NF-κB activation, i.e., the spatial restriction imposed on signaling events by the formation of the immunological synapse between a T cell and antigen-presenting cell presenting specific peptide/MHC.


Assuntos
Antígenos CD28/imunologia , Antígenos CD28/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Humanos , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
6.
Blood ; 116(15): 2694-705, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20576812

RESUMO

The prevailing idea regarding the mechanism(s) by which therapeutic immunosuppressive dendritic cells (DCs) restrain alloimmunity is based on the concept that they interact directly with antidonor T cells, inducing anergy, deletion, and/or regulation. However, this idea has not been tested in vivo. Using prototypic in vitro-generated maturation-resistant (MR) DCs, we demonstrate that once MR-DCs carrying donor antigen (Ag) are administered intravenously, they decrease the direct and indirect pathway T-cell responses and prolong heart allograft survival but fail to directly regulate T cells in vivo. Rather, injected MR-DCs are short-lived and reprocessed by recipient DCs for presentation to indirect pathway CD4(+) T cells, resulting in abortive activation and deletion without detrimental effect on the number of indirect CD4(+) FoxP3(+) T cells, thus increasing the regulatory to effector T cell relative percentage. The effect on the antidonor response was independent of the method used to generate therapeutic DCs or their viability; and in accordance with the idea that recipient Ag-presenting cells mediate the effects of therapeutic DCs in transplantation, prolongation of allograft survival was achieved using donor apoptotic MR-DCs or those lacking surface major histocompatibility complex molecules. We therefore conclude that therapeutic DCs function as Ag-transporting cells rather than Ag-presenting cells to prolong allograft survival.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/transplante , Animais , Apresentação de Antígeno , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Primers do DNA/genética , Células Dendríticas/citologia , Terapia de Imunossupressão , Injeções Intravenosas , Isoantígenos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Doadores de Tecidos , Transplante Homólogo
7.
PLoS One ; 4(3): e4940, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19333400

RESUMO

Chronic allograft vasculopathy (CAV) is an atheromatous-like lesion that affects vessels of transplanted organs. It is a component of chronic rejection that conventional immuno-suppression fails to prevent, and is a major cause of graft loss. Indirect allo-recognition through T cells and allo-Abs are critical during CAV pathogenesis. We tested whether the indirect allo-response and its impact on CAV is down-regulated by in situ-delivery of donor Ags to recipient's dendritic cells (DCs) in lymphoid organs in a pro-tolerogenic fashion, through administration of donor splenocytes undergoing early apoptosis. Following systemic injection, donor apoptotic cells were internalized by splenic CD11c(hi) CD8alpha(+) and CD8(-) DCs, but not by CD11c(int) plasmacytoid DCs. Those DCs that phagocytosed apoptotic cells in vivo remained quiescent, resisted ex vivo-maturation, and presented allo-Ag for up to 3 days. Administration of donor apoptotic splenocytes, unlike cells alive, (i) promoted deletion, FoxP3 expression and IL-10 secretion, and decreased IFN-gamma-release in indirect pathway CD4 T cells; and (ii) reduced cross-priming of anti-donor CD8 T cells in vivo. Targeting recipient's DCs with donor apoptotic cells reduced significantly CAV in a fully-mismatched aortic allograft model. The effect was donor specific, dependent on the physical characteristics of the apoptotic cells, and was associated to down-regulation of the indirect type-1 T cell allo-response and secretion of allo-Abs, when compared to recipients treated with donor cells alive or necrotic. Down-regulation of indirect allo-recognition through in situ-delivery of donor-Ag to recipient's quiescent DCs constitutes a promising strategy to prevent/ameliorate indirect allorecognition and CAV.


Assuntos
Apoptose , Transplante de Células/métodos , Células Dendríticas/imunologia , Rejeição de Enxerto/prevenção & controle , Tolerância ao Transplante/imunologia , Animais , Apresentação Cruzada/imunologia , Camundongos , Transplante de Órgãos , Baço/citologia , Linfócitos T/imunologia , Transplante Homólogo
8.
J Immunol ; 182(5): 2641-53, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19234158

RESUMO

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that targets the beta-cells of the pancreas. We investigated the ability of soluble galectin-1 (gal-1), an endogenous lectin that promotes T cell apoptosis, to down-regulate the T cell response that destroys the pancreatic beta-cells. We demonstrated that in nonobese diabetic (NOD) mice, gal-1 therapy reduces significantly the amount of Th1 cells, augments the number of T cells secreting IL-4 or IL-10 specific for islet cell Ag, and causes peripheral deletion of beta-cell-reactive T cells. Administration of gal-1 prevented the onset of hyperglycemia in NOD mice at early and subclinical stages of T1D. Preventive gal-1 therapy shifted the composition of the insulitis into an infiltrate that did not invade the islets and that contained a significantly reduced number of Th1 cells and a higher percentage of CD4(+) T cells with content of IL-4, IL-5, or IL-10. The beneficial effects of gal-1 correlated with the ability of the lectin to trigger apoptosis of the T cell subsets that cause beta-cell damage while sparing naive T cells, Th2 lymphocytes, and regulatory T cells in NOD mice. Importantly, gal-1 reversed beta-cell autoimmunity and hyperglycemia in NOD mice with ongoing T1D. Because gal-1 therapy did not cause major side effects or beta-cell toxicity in NOD mice, the use of gal-1 to control beta-cell autoimmunity represents a novel alternative for treatment of subclinical or ongoing T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Galectina 1/fisiologia , Hipoglicemiantes/administração & dosagem , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Doenças Autoimunes/prevenção & controle , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/prevenção & controle , Feminino , Galectina 1/administração & dosagem , Humanos , Injeções Intraperitoneais , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
9.
J Immunol ; 180(5): 3081-90, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18292531

RESUMO

Exosomes are nanovesicles released by different cell types including dendritic cells (DCs). The fact that exosomes express surface MHC-peptide complexes suggests that they could function as Ag-presenting vesicles or as vehicles to spread allogeneic Ags for priming of anti-donor T cells during elicitation of graft rejection or induction/maintenance of transplant tolerance. We demonstrate that circulating exosomes transporting alloantigens are captured by splenic DCs of different lineages. Internalization of host-derived exosomes transporting allopeptides by splenic DCs leads to activation of anti-donor CD4 T cells by the indirect pathway of allorecognition, a phenomenon that requires DC-derived, instead of exosome-derived, MHC class II molecules. By contrast, allogeneic exosomes are unable to stimulate direct-pathway T cells in vivo. We demonstrate in mice that although graft-infiltrating leukocytes release exosomes ex vivo, they do not secrete enough concentrations of exosomes into circulation to stimulate donor-reactive T cells in secondary lymphoid organs. Instead, our findings indicate that migrating DCs (generated in vitro or isolated from allografts), once they home in the spleen, they transfer exosomes expressing the reporter marker GFP to spleen-resident DCs. Our results suggest that exchange of exosomes between DCs in lymphoid organs might constitute a potential mechanism by which passenger leukocytes transfer alloantigens to recipient's APCs and amplify generation of donor-reactive T cells following transplantation.


Assuntos
Apresentação de Antígeno , Vesículas Citoplasmáticas/imunologia , Vesículas Citoplasmáticas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Isoantígenos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Sequência de Aminoácidos , Animais , Transplante de Coração/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Transplante de Pele/imunologia
10.
DNA Cell Biol ; 25(3): 171-80, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16569196

RESUMO

Studies have reported that an enhancer can act in trans when artificially, noncovalently bridged to the promoter by a protein-linked biotin:streptavidin complex, or when an enhancer and a promoter are located on separate concatenated plasmids. To investigate such transactivation in mammalian cells, we constructed CMV promoter-enhancer mutants driving the expression of the EGFP reporter gene and transfected cultured cells with various combinations of the mutant PCR products; results were analyzed using fluorescence microscopy and flow cytometry. Our results show that the CMV enhancer can stimulate transcription in trans, even in the absence of physical association of the enhancer and promoter. Furthermore, we show that the transactivation of the CMV enhancer can be strengthened by the histone deacetylase inhibitor sodium butyrate. Finally, we provide evidence that the CMV enhancer can influence, in trans, the activity of heterologous promoters. Although different mechanisms may lead to transcriptional activation when the CMV enhancer is not covalently linked to the promoter, our results suggest that the main mechanism resembles the process of transfection and may be important for gene regulation. These findings may have implications in understanding the processes that underlie gene therapy because of the potential alteration of endogenous gene expression.


Assuntos
Citomegalovirus/genética , Elementos Facilitadores Genéticos , Regulação Viral da Expressão Gênica , Ativação Transcricional , Animais , Ácido Butírico/farmacologia , Células CHO , Linhagem Celular , Cricetinae , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Deleção de Genes , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Histona Desacetilases/farmacologia , Humanos , Cinética , Microscopia de Fluorescência , Mutação , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Transcrição Gênica , Transfecção
11.
J Virol ; 80(4): 1959-64, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16439551

RESUMO

The recent emergence of highly pathogenic avian influenza virus (HPAI) strains in poultry and their subsequent transmission to humans in Southeast Asia have raised concerns about the potential pandemic spread of lethal disease. In this paper we describe the development and testing of an adenovirus-based influenza A virus vaccine directed against the hemagglutinin (HA) protein of the A/Vietnam/1203/2004 (H5N1) (VN/1203/04) strain isolated during the lethal human outbreak in Vietnam from 2003 to 2005. We expressed different portions of HA from a recombinant replication-incompetent adenoviral vector, achieving vaccine production within 36 days of acquiring the virus sequence. BALB/c mice were immunized with a prime-boost vaccine and exposed to a lethal intranasal dose of VN/1203/04 H5N1 virus 70 days later. Vaccination induced both HA-specific antibodies and cellular immunity likely to provide heterotypic immunity. Mice vaccinated with full-length HA were fully protected from challenge with VN/1203/04. We next evaluated the efficacy of adenovirus-based vaccination in domestic chickens, given the critical role of fowl species in the spread of HPAI worldwide. A single subcutaneous immunization completely protected chickens from an intranasal challenge 21 days later with VN/1203/04, which proved lethal to all control-vaccinated chickens within 2 days. These data indicate that the rapid production and subsequent administration of recombinant adenovirus-based vaccines to both birds and high-risk individuals in the face of an outbreak may serve to control the pandemic spread of lethal avian influenza.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Adenoviridae/genética , Animais , Anticorpos Antivirais/sangue , Peso Corporal , Galinhas , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Imunidade Celular , Imunização Secundária/veterinária , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vacinas contra Influenza/administração & dosagem , Influenza Humana/virologia , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/veterinária , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...