Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1336427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525243

RESUMO

Historical vicariance events, linked to the existence of stable physical barriers to gene flow, generate concordant genetic breaks in co-distributed species while stochastic processes (e.g., costal uplift) could cause species-specific genetic breaks as a result of local strong demographic bottlenecks or extinction. In Chile, previous studies show that the area of the 30°S-33°S could correspond to a stable barrier to gene flow that have affected the genetic structure of various algae and marine invertebrates. Here we sequenced two organellar genes (COI and rbcL) in four taxonomically accepted co-distributed red seaweeds species characterized by a low dispersal potential: Mazzaella laminarioides, M. membranacea, Asterfilopsis disciplinalis, and Ahnfeltiopsis vermicularis. Our results revealed the existence of ten strongly differentiated linages in the taxa studied. Strong genetic breaks, concordant in both space and time (divergence estimated to have occurred some 2.9-12.4 million years ago), were observed between taxa distributed across the 33°S. Conversely, in the Central/South part of the Chilean coast, the localization of the genetic breaks/sub-structure observed varied widely (36°S, 38°S, 39°S, and 40°S). These results suggest that a major historical vicariance event has modeled the genetic structure of several Chilean marine organisms in the north of the Chilean coast during the mid-Miocene, while more recent stochastic events and genetic drift could be the driving forces of genetic divergence/structuration in the central-southern part of the coast.

2.
J Phycol ; 59(4): 712-724, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37166446

RESUMO

The coastline is a heterogeneous and highly dynamic environment influenced by abiotic and biotic variables affecting the temporal stability of genetic diversity and structure of marine organisms. The aim of this study was to determine how much the genetic structure of four species of marine Bangiales vary in time and space. Partial sequences of the cytochrome oxidase I (COI) gene obtained from two Pyropia (Py. sp. CHJ and Py. orbicularis) and two Porphyra (P. mumfordii and P. sp. FIH) species were used to compare the effect of the 40° S/41° S biogeographic break (spatial-regional scale) and the one of the Valdivia River discharges (spatial-local scale) and determine their temporal stability. Four seasonal samplings were taken during 1 year at five sites, one site located in Melinka (Magallanes province) and four sites along the coast of Valdivia (Intermediate area), on both sides of the river mouth. Results showed a strong genetic spatial structure at regional scale (ΦST > 0.4) in Py. sp. CHJ, Py. orbicularis, and P. mumfordii, congruent with the 41° S/42° S biogeographic break. A potential barrier to gene flow, related to the Valdivia River discharge, was detected only in P. mumfordii. In P. sp. FIH, spatial genetic structure was not detected at any scale. The genetic structure of all four species is stable throughout the year. The potential effect of main currents and river discharge in limiting the transport of Bangiales spores are discussed. We propose that both a restricted propagule dispersal and the formation potential for persistent banks of microscopic stages could lead to a temporally stable spatial partitioning of genetic variation in bladed Bangiales.


Assuntos
Porphyra , Rodófitas , Filogenia , Chile , Rodófitas/genética , Organismos Aquáticos , Variação Genética
3.
Genes (Basel) ; 9(6)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882839

RESUMO

Three types of sex chromosome system exist in nature: diploid XY and ZW systems and haploid UV systems. For many years, research has focused exclusively on XY and ZW systems, leaving UV chromosomes and haploid sex determination largely neglected. Here, we perform a detailed analysis of DNA sequence neutral diversity levels across the U and V sex chromosomes of the model brown alga Ectocarpus using a large population dataset. We show that the U and V non-recombining regions of the sex chromosomes (SDR) exhibit about half as much neutral diversity as the autosomes. This difference is consistent with the reduced effective population size of these regions compared with the rest of the genome, suggesting that the influence of additional factors such as background selection or selective sweeps is minimal. The pseudoautosomal region (PAR) of this UV system, in contrast, exhibited surprisingly high neutral diversity and there were several indications that genes in this region may be under balancing selection. The PAR of Ectocarpus is known to exhibit unusual genomic features and our results lay the foundation for further work aimed at understanding whether, and to what extent, these structural features underlie the high level of genetic diversity. Overall, this study fills a gap between available information on genetic diversity in XY/ZW systems and UV systems and significantly contributes to advancing our knowledge of the evolution of UV sex chromosomes.

4.
Mol Ecol ; 26(13): 3497-3512, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28295812

RESUMO

We aimed to study the importance of hybridization between two cryptic species of the genus Ectocarpus, a group of filamentous algae with haploid-diploid life cycles that include the principal genetic model organism for the brown algae. In haploid-diploid species, the genetic structure of the two phases of the life cycle can be analysed separately in natural populations. Such life cycles provide a unique opportunity to estimate the frequency of hybrid genotypes in diploid sporophytes and meiotic recombinant genotypes in haploid gametophytes allowing the effects of reproductive barriers preventing fertilization or preventing meiosis to be untangle. The level of hybridization between E. siliculosus and E. crouaniorum was quantified along the European coast. Clonal cultures (568 diploid, 336 haploid) isolated from field samples were genotyped using cytoplasmic and nuclear markers to estimate the frequency of hybrid genotypes in diploids and recombinant haploids. We identified admixed individuals using microsatellite loci, classical assignment methods and a newly developed Bayesian method (XPloidAssignment), which allows the analysis of populations that exhibit variations in ploidy level. Over all populations, the level of hybridization was estimated at 8.7%. Hybrids were exclusively observed in sympatric populations. More than 98% of hybrids were diploids (40% of which showed signs of aneuploidy) with a high frequency of rare alleles. The near absence of haploid recombinant hybrids demonstrates that the reproductive barriers are mostly postzygotic and suggests that abnormal chromosome segregation during meiosis following hybridization of species with different genome sizes could be a major cause of interspecific incompatibility in this system.


Assuntos
Genética Populacional , Hibridização Genética , Phaeophyceae/genética , Alga Marinha/genética , Animais , Teorema de Bayes , Diploide , Europa (Continente) , Genótipo , Haploidia , Meiose , Repetições de Microssatélites , Simpatria
5.
J Phycol ; 53(1): 17-31, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27454456

RESUMO

The genus Ectocarpus (Ectocarpales, Phaeophyceae) contains filamentous algae widely distributed in marine and estuarine habitats of temperate regions in both hemispheres. While E. siliculosus has become a model organism for genomics and genetics of the brown macroalgae, accurate species delineation, distribution patterns and diversity for the genus Ectocarpus remain problematic. In this study, we used three independent species delimitation approaches to generate a robust species hypothesis for 729 Ectocarpus specimens collected mainly along the European and Chilean coasts. These approaches comprised phylogenetic reconstructions and two bioinformatics tools developed to objectively define species boundaries (General Mixed Yule Coalescence Method and Automatic Barcode Gap Discovery). Our analyses were based on DNA sequences of two loci: the mitochondrial cytochrome oxidase subunit 1 and the nuclear internal transcribed spacer 1 of the ribosomal DNA. Our analyses showed the presence of at least 15 cryptic species and suggest the existence of incomplete lineage sorting or introgression between five of them. These results suggested the possible existence of different levels of reproductive barriers within this species complex. We also detected differences among species in their phylogeographic patterns, range and depth distributions, which may suggest different biogeographic histories (e.g., endemic species or recent introductions).


Assuntos
Variação Genética , Phaeophyceae/classificação , Phaeophyceae/genética , Filogenia , Chile , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Europa (Continente) , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...