Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(19): 23753-23766, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33099736

RESUMO

In this study, the simultaneous degradation of antibiotics (ampicillin, sulfamethazine, and tetracycline; and non-steroidal anti-inflammatories (diclofenac and salicylic acid)) including the total organic carbon abatement by solar photoelectro-Fenton process was assessed. Eight liters of solution containing the mixture of the five pharmaceuticals in 1 mmol L-1 Fe2+, 0.05 mol L-1 Na2SO4 at pH 3 and 35 °C were electrolyzed applying different current densities (j = 10, 25, and 50 mA cm-2) in a solar-electrochemical pilot plant. The pilot plant was equipped with an electrochemical filter press cell with a dimensionally stable anode (DSA type) and an air-diffusion cathode coupled to a solar photoreactor exposed directly to sunlight radiation. All pharmaceuticals were degraded during the first 10 min. A TOC removal efficiency of 99.2% after 100 min of treatment with an energy consumption of 534.23 kW h (kgTOC)-1 and 7.15 kW h m-3 was achieved. The pharmaceutical concentration decay followed a pseudo-first-order kinetics. The specific energy per unit of mass of ampicillin, diclofenac, salicylic acid, sulfamethazine, and tetracycline was obtained at 11.73, 19.56, 35.2, 11.73, and 39.32 kW h (kgPD)-1 for ampicillin, diclofenac, salicylic acid, sulfamethazine, and tetracycline, respectively. With our results, we demonstrated that SPEF is an emerging technology for the treatment of this type of pollutants in short time.


Assuntos
Poluentes Ambientais , Preparações Farmacêuticas , Poluentes Químicos da Água , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Ferro , Oxirredução , Luz Solar
2.
Chemosphere ; 247: 125939, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069720

RESUMO

The removal of the analgesic tramadol (TMD) from water was studied by electro-Fenton (EF) process using BDD anode. Hydroxyl radicals (OH) generated in this process are very strong oxidants and able to successfully oxidize TMD until its total mineralization in aqueous solution. The oxidative degradation of TMD was very rapid with complete disappearance of 0.1 mM (26.3 mg L-1) TMD in 10 min at 500 mA constant current electrolysis. The absolute (second order) rate constant for oxidation of TMD by OH was determined using competition kinetic method and found to be (5.59 ± 0.03) ✕ 109 M-1 s-1. The quasi-complete mineralization of the 0.1 mM TMD solution was obtained in 6 h electrolysis at 500 mA current. Several oxidation reaction intermediates were identified using GC-MS analysis. Oxalic, glyoxylic and fumaric acids were identified and their evolution during electrolysis was followed along treatment. Ammonium and nitrate ions, released during the treatment, were also considered. Based on these data and TOC removal results, a possible mineralization pathway was proposed.


Assuntos
Tramadol/química , Poluentes Químicos da Água/química , Analgésicos , Eletrodos , Eletrólise , Peróxido de Hidrogênio , Radical Hidroxila , Cinética , Oxidantes , Oxirredução , Platina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...