Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543494

RESUMO

While having already killed more than 7 million of people worldwide in 4 years, SARS-CoV-2, the etiological agent of COVID-19, is still circulating and evolving. Understanding the pathogenesis of the virus is of capital importance. It was shown that in vitro and in vivo infection with SARS-CoV-2 can lead to cell cycle arrest but the effect of the cell cycle arrest on the virus infection and the associated mechanisms are still unclear. By stopping cells in the G1 phase as well as targeting several pathways involved using inhibitors and small interfering RNAs, we were able to determine that the cell cycle arrest in the late G1 is beneficial for SARS-CoV-2 replication. This cell cycle arrest is independent of p53 but is dependent on the CDC25A-CDK2/cyclin E pathway. These data give a new understanding in SARS-CoV-2 pathogenesis and highlight some possible targets for the development of novel therapeutic approaches.

2.
Nat Microbiol ; 9(6): 1499-1512, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548922

RESUMO

Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.


Assuntos
Apolipoproteínas E , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Receptores de LDL , Internalização do Vírus , Animais , Humanos , Camundongos , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Febre Hemorrágica da Crimeia/metabolismo , Camundongos Knockout , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virais/metabolismo , Carrapatos/virologia , Carrapatos/metabolismo
3.
Pathogens ; 11(2)2022 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-35215213

RESUMO

The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here.

4.
J Virol Methods ; 290: 114075, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33515661

RESUMO

BACKGROUND: Crimean-Congo Hemorrhagic Fever (CCHF) is a severe tick-borne viral hemorrhagic disease caused by Crimean-Congo Hemorrhagic Fever Virus (CCHFV) that poses serious public health challenges in many parts of Africa, Europe and Asia. METHODS: We examined 500 cattle sera samples from five districts for CCHFV antibodies using in-house and commercially available (IDVet) ELISA, Immunofluorescent assay (IFA) and Real-time polymerase chain reaction (RT-PCR). RESULTS: 500 cattle (73.8 % females) were analyzed; CCHFV seropositivity was 12.6 % (n = 63) and 75.0 % (n = 375) with the in-house and IDVet ELISAs, respectively. Seropositivity was associated with geographical location, increasing age, being female, and having a higher tick burden. Twenty four out of the 37 (64.8 %) were seropositive for CCHFV using IFA and all were negative for virus on RT-PCR. The IFA results were more comparable to IDVet (κcoefficient = 0.88, p = <0.01) than to in-house (κcoefficient = 0.32, p = 0.02). CONCLUSIONS: Our study confirmed the presence and high prevalence of anti-CCHF antibodies in cattle based on three methods from all the five study districts, confirming presence and exposure of CCHFV. Given the zoonotic potential for CCHFV, we recommend a multidisciplinary public health surveillance and epidemiology of CCHFV in both animals and humans throughout the country.


Assuntos
Ensaio de Imunoadsorção Enzimática , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Animais , Anticorpos Antivirais , Bovinos , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Masculino , Uganda/epidemiologia
5.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30242057

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory diseases in humans and has a high mortality rate. During infection, MERS-CoV regulates several host cellular processes including antiviral response genes. In order to determine if the nucleocapsid protein of MERS-CoV (MERS-N) plays a role in viral-host interactions, a murine monoclonal antibody was generated so as to allow detection of the protein in infected cells as well as in overexpression system. Then, MERS-N was stably overexpressed in A549 cells, and a PCR array containing 84 genes was used to screen for genes transcriptionally regulated by it. Several up-regulated antiviral genes, namely TNF, IL6, IL8, and CXCL10, were selected for independent validation in transiently transfected 293FT cells. Out of these, the overexpression of MERS-N was found to up-regulate CXCL10 at both transcriptional and translational levels. Interestingly, CXCL10 has been reported to be up-regulated in MERS-CoV infected airway epithelial cells and lung fibroblast cells, as well as monocyte-derived macrophages and dendritic cells. High secretions and persistent increase of CXCL10 in MERS-CoV patients have been also associated with severity of disease. To our knowledge, this is the first report showing that the MERS-N protein is one of the contributing factors for CXCL10 up-regulation during infection. In addition, our results showed that a fragment consisting of residues 196-413 in MERS-N is sufficient to up-regulate CXCL10, while the N-terminal domain and serine-arginine (SR)-rich motif of MERS-N do not play a role in this up-regulation.


Assuntos
Quimiocina CXCL10/genética , Infecções por Coronavirus/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Proteínas do Nucleocapsídeo/genética , Células A549 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Regulação Viral da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Domínios Proteicos/genética , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...