Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857973

RESUMO

MPDZ, a gene with diverse functions mediating cell-cell junction interactions, receptor signaling, and binding multivalent scaffold proteins, is associated with a spectrum of clinically heterogeneous phenotypes with biallelic perturbation. Despite its clinical relevance, the mechanistic underpinnings of these variants remain elusive, underscoring the need for extensive case series and functional investigations. In this study, we conducted a systematic review of cases in the literature through two electronic databases following the PRISMA guidelines. We selected nine studies, including 18 patients, with homozygous or compound heterozygous variants in MPDZ and added five patients from four unrelated families with novel MPDZ variants. To evaluate the role of Mpdz on hearing, we analyzed available auditory electrophysiology data from a knockout murine model (Mpdzem1(IMPC)J/em1(IMPC)J) generated by the International Mouse Phenotyping Consortium. Using exome and genome sequencing, we identified three families with compound heterozygous variants, and one family with a homozygous frameshift variant. MPDZ-related disease is clinically heterogenous with hydrocephaly, vision impairment, hearing impairment and cardiovascular disease occurring most frequently. Additionally, we describe two unrelated patients with spasticity, expanding the phenotypic spectrum. Our murine analysis of the Mpdzem1(IMPC)J/em1(IMPC)J allele showed severe hearing impairment. Overall, we expand understanding of MPDZ-related phenotypes and highlight hearing impairment and spasticity among the heterogeneous phenotypes.

2.
HGG Adv ; 5(3): 100287, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553851

RESUMO

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.

3.
Genet Med ; 23(4): 661-668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33420346

RESUMO

PURPOSE: To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.


Assuntos
Nanismo , Deficiência Intelectual , Ubiquitina-Proteína Ligases/genética , Animais , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Hipotonia Muscular , Fenótipo , Síndrome , Sequenciamento do Exoma
4.
J Mol Diagn ; 22(8): 1041-1049, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32497716

RESUMO

Overcoming challenges for the unambiguous detection of copy number variations is essential to broaden our understanding of the role of genomic variants in the clinical phenotype. With the improvement of software and databases, whole-exome sequencing quickly can become an excellent strategy in the routine diagnosis of patients with a developmental delay and/or multiple congenital malformations. However, even after a detailed analysis of pathogenic single-nucleotide variants and indels in known disease genes, using whole-exome sequencing, some patients with suspected syndromic conditions are left without a conclusive diagnosis. These negative results could be the result of different factors including nongenetic etiologies, lack of knowledge about the genes that cause different disease phenotypes, or, in some cases, a deletion or duplication of genomic information not routinely detectable by whole-exome sequencing variant calling. Although copy number variant detection is possible using whole-exome sequencing data, such analysis presents significant challenges and cannot yet be used to replace chromosomal arrays for identification of deletions or duplications.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Sequenciamento do Exoma/métodos , Polimorfismo de Nucleotídeo Único , Anormalidades Múltiplas/sangue , Bases de Dados Genéticas , Deficiências do Desenvolvimento/sangue , Exoma , Éxons , Humanos , Mutação INDEL , Fenótipo , Software
5.
Eur J Med Genet ; 63(1): 103624, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30690204

RESUMO

The Na+/K+- ATPase acts as an ion pump maintaining the essential plasma membrane potential in all mammalian cell types, and is essential for many cellular functions. There are four α isoforms (α1, α2, α3 and α4) with distinct expression patterns, kinetic properties and substrate affinity. The α2-isoform is encoded by ATP1A2 and evidence supports its utmost importance in Cl- homeostasis in neurons, and in the function of respiratory neurons at birth. Monallelic pathogenic variants in ATP1A2 are associated with familial hemiplegic migraine type 2 (FHM2) and on rare occasions with alternating hemiplegia of childhood 1 (AHC1). To date, no instances of biallelic loss of function variants have been reported in humans. However, Atp1a2 homozygous loss of function knockout mice (α2-/- mice) show severe motor deficits, with lack of spontaneous movements, and are perinatally lethal due to absent respiratory activity. In this report we describe three newborns from two unrelated families, who died neonatally, presenting in utero with an unusual form of fetal hydrops, seizures and polyhydramnios. At birth they had multiple joint contractures (e.g. arthrogryposis), microcephaly, malformations of cortical development, dysmorphic features and severe respiratory insufficiency. Biallelic loss of function variants in ATP1A2, predicted to be pathogenic were found on whole exome sequencing. We propose that this is a distinctive new syndrome caused by complete absence of Na+/K+- ATPase α2-isoform expression.


Assuntos
Artrogripose/genética , Hidropisia Fetal/genética , Microcefalia/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/genética , Alelos , Animais , Artrogripose/patologia , Criança , Feminino , Predisposição Genética para Doença , Humanos , Hidropisia Fetal/patologia , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Camundongos , Microcefalia/patologia , Enxaqueca com Aura/patologia , Fenótipo , Gravidez , Isoformas de Proteínas/genética , Sequenciamento do Exoma
6.
Clin Case Rep ; 7(8): 1582-1584, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31428396

RESUMO

Recognition of a de novo mutation in NR4A2 associated with a neurodevelopmental phenotype reinforces its role in 2q23q24 microdeletion syndrome. Using the proband WES data and the probability of loss-of-function intolerance index (pLi) set at 1.0 (highest intolerance constraint), we could target NR4A2 as the candidate gene in this patient.

7.
Mol Syndromol ; 8(5): 244-252, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28878608

RESUMO

In the last few decades, different methods for the detection of genomic imbalances, such as the microdeletion syndromes, were developed. The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome and presents wide clinical heterogeneity. The aim of this study was to describe 4 unusual cases of genomic imbalances found in individuals with suspected microdeletion syndromes. Different methods were necessary to complete the diagnosis and to obtain information for genetic counseling. The study was retrospective and descriptive. From August 2014 to December 2015, 39 individuals were assessed using FISH and/or MLPA; in 15 cases, chromosomal microarray (CMA) analysis was carried out. Of 39 registered individuals, we found deletions in the 22q11.2 region in 10 individuals (8 individuals with 22q11.2DS and 2 individuals presenting with atypical deletions in the 22q11.2 region: 1 distal deletion and 1 central deletion). In one case with a typical 22q11.2 deletion, a familial balanced translocation was detected. In another case without a 22q11.2 deletion, a 6p duplication concomitant with a 9p deletion was detected by CMA. Clinical data are reported and diagnostic investigations are discussed. Essential aspects for the understanding of different diagnostic techniques of genomic imbalances are considered, and the 4 cases described underline the complexity and the difficulties involved in the diagnostic process. The approach is informative for clinical practice and may be applied in other contexts of genomic imbalance investigation in microdeletion syndromes.

8.
J Dev Behav Pediatr ; 36(7): 544-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26263419

RESUMO

Copy number variation studies of known disorders have the potential to improve the characterization of clinical phenotypes and may help identifying candidate genes and their pathways. The authors described a child with congenital heart disease, microcephaly, facial dysmorphisms, developmental delay, learning difficulties, and behavioral problems. There was initially a clinical suspicion of 22q11.2 deletion syndrome (22q11.2 DS), but molecular cytogenetic analysis (array genomic hybridization [aGH]) showed the presence of a de novo 3.6-Mb interstitial microdeletion in 8p23.1. The main features of 8p23.1 DS include congenital heart disease and behavioral problems, in addition to minor dysmorphisms and mental delay. Therefore, this article highlights the application of aGH to investigate 8p23.1 deletion in nonconfirmed 22q11.2 DS patients presenting neurobehavioral disorders, congenital cardiopathy, and minor dysmorphisms.


Assuntos
Deficiências do Desenvolvimento/genética , Cardiopatias/genética , Microcefalia/genética , Comportamento Problema , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 8/genética , Hibridização Genômica Comparativa , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Face/patologia , Feminino , Cardiopatias/congênito , Humanos
9.
J Pediatr Genet ; 4(1): 17-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27617111

RESUMO

Velocardiofacial syndrome is one of the recognized forms of chromosome 22q11.2 deletion syndrome (22q11.2 DS) and has an incidence of 1 of 4,000 to 1 of 6,000 births. Nevertheless, the 22q11 deletion is not found in several patients with a 22q11.2 DS phenotype. In this situation, other chromosomal aberrations and/or mutations in the T-box 1 transcription factor C (TBX1) gene have been detected in some patients. A similar phenotype to that of the 22q11.2 DS has been reported in animal models with mutations in fibroblast growth factor 8 (Fgf8) gene. To date, FGF8 mutations have not been investigated in humans. We tested a strategy to perform laboratory testing to reduce costs in the investigation of patients presenting with the 22q11.2 DS phenotype. A total of 109 individuals with clinical suspicion were investigated using GTG-banding karyotype, fluorescence in situ hybridization, and/or multiplex ligation-dependent probe amplification. A conclusive diagnosis was achieved in 33 of 109 (30.2%) cases. In addition, mutations in the coding regions of TBX1 and FGF8 genes were investigated in selected cases where 22q11.2 deletion had been excluded, and no pathogenic mutations were detected in both genes. This study presents a strategy for molecular genetic characterization of patients presenting with the 22q11.2 DS using different laboratory techniques. This strategy could be useful in different countries, according to local resources. Also, to our knowledge, this is the first investigation of FGF8 gene in humans with this clinical suspicion.

10.
Cleft Palate Craniofac J ; 52(4): 411-6, 2015 07.
Artigo em Inglês | MEDLINE | ID: mdl-24805874

RESUMO

OBJECTIVES: The aim of this study was to describe clinical features in subjects with palatal abnormalities and to assess the distribution of these features among those with and without 22q11.2 deletion. DESIGN: Descriptive cohort. PATIENTS: One hundred patients with palatal abnormalities and suspicion of 22q11.2 DS were included. METHODS: All patients were evaluated by a clinical geneticist, who completed a standardized clinical protocol. The 22q11.2 deletion screening was performed with fluorescence in situ hybridization using the TUPLE1 probe and multiplex ligation-dependent probe amplification using the P250-A1 kit. RESULTS: The 22q11.2 deletion was detected in 35 patients, in whom the most frequent clinical features were congenital heart disease (15/30 - 50%), developmental delay (19/35 - 54%), speech delay (20/35 - 57%), learning disabilities (27/35 - 77%), immunologic alterations (18/29 - 62%). In addition, the most common facial dysmorphisms in this group were long face (27/35 - 77%), typical nose (24/35 - 69%), and hooded eyelids (19/35 - 54%). Comparing features in patients with or without the deletion revealed significant differences (positively correlated with the deletion) for speech delay, learning disabilities, conductive hearing loss, number of dysmorphisms, long face, and hooded eyelids. Cleft lip and palate was negatively correlated with the deletion. CONCLUSIONS: The presence of speech delay, learning disabilities, conductive hearing loss, long face, and hooded eyelids should reinforce the suspicion of 22q11.2 DS in patients with palatal abnormalities and would help professionals direct clinical follow-up of these patients.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/diagnóstico , Palato/anormalidades , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Masculino
11.
Eur J Pediatr ; 172(7): 927-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23440478

RESUMO

The 22q11.2 deletion is the most frequent interstitial deletion in humans and presents a wide phenotypic spectrum, with over 180 clinical manifestations described. Distinct studies have detected frequencies of the deletion ranging from 0 % to 75 %, depending on the studied population and selection criteria adopted. Due to the lack of consensus in this matter, several studies have been conducted aiming to define which patients would be eligible for screening; however, the issue is still up for debate. In order to contribute to the delineation of possible clinical and dysmorphologic guidelines to optimize decision making in the clinical setting, 194 individuals with variable features of the 22q11.2 deletion syndromes (22q11.2DS) were evaluated. Group I, clinical suspicion of 22q11.2DS with palatal anomalies; Group II, clinical suspicion without palatal anomalies; Group III, cardiac malformations associated with the 22q11.2DS; and Group IV, juvenile-onset schizophrenia. Multiplex ligation-dependent probe amplification was used for screening the 22q11.2 deletion, which was detected in 45 patients (23.2 %), distributed as such: Group I, 35/101 (34.7 %); Group II, 4/18 (22.2 %); Group III, 6/52 (11.5 %); and Group IV, 0/23 (0 %). Clinical data were analyzed by frequency distribution and statistically. Based on the present results and on the review of the literature, we propose a set of guidelines for screening patients with distinct manifestations of the 22q11.2DS in order to maximize resources. In addition, we report the dysmorphic features which we found to be statistically correlated with the presence of the 22q11.2DS.


Assuntos
Cromossomos Humanos Par 22/genética , Síndrome de DiGeorge/diagnóstico , Testes Genéticos , Cardiopatias Congênitas , Palato/anormalidades , Guias de Prática Clínica como Assunto , Esquizofrenia Infantil , Adolescente , Adulto , Criança , Pré-Escolar , Bandeamento Cromossômico , Síndrome de DiGeorge/fisiopatologia , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...