Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34361324

RESUMO

Designing biomaterials for bone-substitute applications is still a challenge regarding the natural complex structure of hard tissues. Aiming at bone regeneration applications, scaffolds based on natural collagen and synthetic nanohydroxyapatite were developed, and they showed adequate mechanical and biological properties. The objective of this work was to perform and evaluate a scaled-up production process of this porous biocomposite scaffold, which promotes bone regeneration and works as a barrier for both fibrosis and the proliferation of scar tissue. The material was produced using a prototype bioreactor at an industrial scale, instead of laboratory production at the bench, in order to produce an appropriate medical device for the orthopedic market. Prototypes were produced in porous membranes that were e-beam irradiated (the sterilization process) and then analysed by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), dynamic mechanical analysis (DMA), cytotoxicity tests with mice fibroblasts (L929), human osteoblast-like cells (MG63) and human MSC osteogenic differentiation (HBMSC) with alkaline phosphatase (ALP) activity and qPCR for osteogenic gene expression. The prototypes were also implanted into critical-size bone defects (rabbits' tibia) for 5 and 15 weeks, and after that were analysed by microCT and histology. The tests performed for the physical characterization of the materials showed the ability of the scaffolds to absorb and retain water-based solvents, as well as adequate mechanical resistance and viscoelastic properties. The cryogels had a heteroporous morphology with microporosity and macroporosity, which are essential conditions for the interaction between the cells and materials, and which consequently promote bone regeneration. Regarding the biological studies, all of the studied cryogels were non-cytotoxic by direct or indirect contact with cells. In fact, the scaffolds promoted the proliferation of the human MSCs, as well as the expression of the osteoblastic phenotype (osteogenic differentiation). The in vivo results showed bone tissue ingrowth and the materials' degradation, filling the critical bone defect after 15 weeks. Before and after irradiation, the studied scaffolds showed similar properties when compared to the results published in the literature. In conclusion, the material production process upscaling was optimized and the obtained prototypes showed reproducible properties relative to the bench development, and should be able to be commercialized. Therefore, it was a successful effort to harness knowledge from the basic sciences to produce a new biomedical device and enhance human health and wellbeing.

2.
Materials (Basel) ; 14(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34442946

RESUMO

Herein, we validated novel functionalized hybrid semiconductor bioconjugates made of fluorescent quantum dots (QD) with the surface capped by chitosan (polysaccharide) and chemically modified with O-phospho-L-serine (OPS) that are biocompatible with different human cell sources. The conjugation with a directing signaling molecule (OPS) allows preferential accumulation in human bone mesenchymal stromal cells (HBMSC). The chitosan (Chi) shell with the fluorescent CdS core was characterized by spectroscopical (UV spectrophotometry and photoluminescence), by morphological techniques (Transmission Electron Microscopy (TEM)) and showed small size (ø 2.3 nm) and a stable photoluminescence emission band. The in vitro biocompatibility results were not dependent on the polysaccharide chain length (Chi with higher and lower molecular weight) but were remarkably affected by the surface modification (Chi or Chi-OPS). In addition, the efficiency of nanoparticles uptake by the cells was dependent on cells nature (human primary cells or cell lines) and tissue source (bone or skin) in the presence or absence of the OPS modification. The complex cellular uptake pathways involved in the cell labeling with the nanoparticles do not interfere on the normal cellular biology (adhesion and proliferation), osteogenic differentiation, and gene expression. The bone cells particles uptake evaluation showed a possible pathway by Caveolin-1 that regulates cell transduction in the membrane's Caveolae. Caveolae mediates non-specific endocytosis, and it is upregulated in HBMSC. The OPS-modified nanoparticles promoted an intense intracellular trafficking by the HBMSCs that showed late-osteoblast phenotype with an increase of extracellular matrix (ECM) mineralization (Alizarin red and Von Kossa staining for calcium phosphate crystals). In this work, the OPS modified bioconjugated QD proved to be a reliable and stable fluorescent bioprobe for cell imaging and targeting research that could also help in clarifying some cellular mechanisms of particles intracellular traffic through the cytoplasmic membrane and osteogenic differentiation induction. The in vitro HBMSC's biocompatibility responses indicated that the OPS-modified chitosan QDs have a prospective future in laboratory and pre-clinical applications such as bioimaging analysis and for ex-vivo cellular evaluation of biomedical implants.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32671055

RESUMO

Massive amounts of cell are needed for creating tissue engineered 3D constructs, which often requires culture on scaffolds under dynamic conditions to facilitate nutrients and oxygen diffusion. Dynamic cultures are expected to improve cell viability and proliferation rate, when compared to static conditions. However, cells from distinct types and/or tissues sources may respond differently to external stimuli and be incompatible with culture under mechanical shear stress. The first aim of this work was to show that dental stem cells are a valuable source for improving bone regeneration potential of artificial grafts. Mesenchymal stem/stromal cells (MSCs) were isolated from human dental follicle (hDFMSC) and pulp tissues (hDPMSC) and shown to express prototypical stem cell markers. The follicle and pulp dental MSCs capacity to differentiate into osteoblast lineage was evaluated after seeding on 3D porous scaffolds of collagen-nanohydroxyapatite/phosphoserine biocomposite cryogel with osteogenic factors in the culture medium. Both tooth-derived MSCs were able to show high ALP activity, express osteogenic gene markers and secrete osteopontin (OPN). Thereafter, designed multicompartment holder adaptable to spinner flasks was used for dynamic culture (50 rpm) of both dental MSCs types within the porous 3D scaffolds. Standard static culture conditions were used as control. Culture under dynamic conditions promoted follicle MSCs proliferation, while improving their spatial distribution within the scaffold. Under dynamic conditions, the biocomposite scaffold promoted MSCs osteogenic differentiation, as suggested by increased alkaline phosphatase (ALP) activity, higher osteogenic gene expression and OPN deposition. In a similar manner, under dynamic conditions, dental pulp MSCs also showed higher ALP activity and proliferation rate, but lower amounts of osteopontin secretion, when compared to static conditions. After implantation, dental follicle MSCs-loaded 3D scaffolds cultured under dynamic conditions showed higher tissue ingrowth and osteogenic differentiation (higher human OPN secretion) than dental pulp cells. Overall, this study explored the use of tooth-derived stem cells as a clinical alternative source for bone tissue engineering, together with an innovative device for dynamic culture of cell-laden 3D scaffolds. Results showed that human MSCs response upon culture on 3D scaffolds, depends on the cells source and the culture regimen. This suggests that both the type of cells and their culture conditions should be carefully adjusted according to the final clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...