Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676393

RESUMO

Luminescent solar concentrators (LSCs) have been extensively studied as they offer a practical solution to increase the efficiency of silicon-based photovoltaics (PVs). In this context, the use of natural and organic luminescent materials is desirable in order to obtain sustainable and environmentally friendly devices. Moreover, solution-processable organic host-guest systems based on Foerster Resonant Energy Transfer (FRET) processes offer the possibility to exploit a low-cost technique to obtain an efficient energy downshift from the UV-visible to red or deep red emissions in order to concentrate the radiation in the area of maximum efficiency of the PV device. Nevertheless, organic materials are subjected to photodegradation that reduces their optical properties when exposed to UV light and oxygen. In this work, we incorporated two different antioxidant molecules (i.e., octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (Octa) and L-ascorbic acid (L-Asc)) in a three-dye host-guest system and studied the corresponding optical properties after prolonged irradiation times in air. It was found that the presence of the antioxidants, especially L-Asc, slowed the system's photodegradation down whilst at the same time retaining high emission efficiencies and without interfering with the cascade Resonant Energy Transfer processes among the dyes inserted in the nanochannels of the host.

2.
Materials (Basel) ; 15(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36143702

RESUMO

The current Special Issue entitled "Innovations in Semiconducting Block Copolymers" aims to discuss cutting-edge research regarding the synthesis, characterization and application of semiconducting block copolymers, with a special focus on the realization of novel and innovative nanostructured materials for the production of advanced devices suitable in different fields, ranging from sensors applications to optic photovoltaics [...].

3.
Cancers (Basel) ; 12(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759820

RESUMO

Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression; therefore, targeting of UPR-related molecules may open novel therapeutic avenues. Endoplasmic reticulum (ER) stress and UPR pathways are constitutively activated in MM cells, which are characterized by an increased protein turnover as a consequence of high production of immunoglobulins and high rates of protein synthesis. A great deal of scientific data also evidenced that a mild activation of UPR pathway can regulate cellular differentiation. Our previous studies revealed that MM cell-derived small extracellular vesicle (MM-EV) modulated osteoclasts (OCs) function and induced OCs differentiation. Here, we investigated the role of the UPR pathway, and in particular of the IRE1α/XBP1 axis, in osteoclastogenesis induced by MM-EVs. By proteomic analysis, we identified UPR signaling molecules as novel MM-EV cargo, prompting us to evaluate the effects of the MM-EVs on osteoclastogenesis through UPR pathway. MM-EVs administration in a murine macrophage cell line rapidly induced activation of IRE1α by phosphorylation in S724; accordingly, Xbp1 mRNA splicing was increased and the transcription of NFATc1, a master transcription factor for OCs differentiation, was activated. Some of these results were also validated using both human primary OC cultures and MM-EVs from MM patients. Notably, a chemical inhibitor of IRE1α (GSK2850163) counteracted MM-EV-triggered OC differentiation, hampering the terminal stages of OCs differentiation and reducing bone resorption.

4.
Physiol Plant ; 166(1): 351-364, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30693538

RESUMO

The emission spectra collected under conditions of open (F0 ) and closed (FM ) photosystem II (PSII) reaction centres are close-to-independent from the excitation wavelength in Chlamydomonas reinhardtii and Chlorella sorokiniana, whereas a pronounced dependence is observed in Synechocystis sp. PCC6803 and Synechococcus PCC7942, instead. The differences in band-shape between the F0 and FM emission are limited in green algae, giving rise only to a minor trough in the FV /FM spectrum in the 705-720 nm range, irrespectively of the excitation. More substantial variations are observed in cyanobacteria, resulting in marked dependencies of the measured FV /FM ratios on both the excitation and the detection wavelengths. In cyanobacteria, the maximal FV /FM values (0.5-0.7), observed monitoring at approximately 684 nm and exciting Chl a preferentially, are comparable to those of green algae; however, FV /FM decreases sharply below approximately 660 nm. Furthermore, in the red emission tail, the trough in the FV /FM spectrum is more pronounced in cyanobacteria with respect to green algae, corresponding to FV /FM values of 0.25-0.4 in this spectral region. Upon direct phycobilisomes excitation (i.e. >520 nm), the FV /FM value detected at 684 nm decreases to 0.3-0.5 and is close-to-negligible (approximately 0.1) below 660 nm. At the same time, the FV spectra are, in all species investigated, almost independent on the excitation wavelength. It is concluded that the excitation/emission dependencies of the FV /FM ratio arise from overlapped contributions from the three independent emissions of PSI, PSII and a fraction of energetically uncoupled external antenna, excited in different proportions depending on the respective optical cross-section and fluorescence yield.


Assuntos
Clorófitas/metabolismo , Cianobactérias/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo
5.
Physiol Plant ; 166(1): 403-412, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30548263

RESUMO

The cyanobacterium Synechocystis sp. PCC 6803 is a model species commonly employed for biotechnological applications. It is naturally able to accumulate zeaxanthin (Zea) and echinenone (Ech), but not astaxanthin (Asx), which is the highest value carotenoid produced by microalgae, with a wide range of applications in pharmaceutical, cosmetics, food and feed industries. With the aim of finding an alternative and sustainable biological source for the production of Asx and other valuable hydroxylated and ketolated intermediates, the carotenoid biosynthetic pathway of Synechocystis sp. PCC 6803 has been engineered by introducing the 4,4' ß-carotene oxygenase (CrtW) and 3,3' ß-carotene hydroxylase (CrtZ) genes from Brevundimonas sp. SD-212 under the control of a temperature-inducible promoter. The expression of exogenous CrtZ led to an increased accumulation of Zea at the expense of Ech, while the expression of exogenous CrtW promoted the production of non-endogenous canthaxanthin and an increase in the Ech content with a concomitant strong reduction of ß-carotene (ß-car). When both Brevundimonas sp. SD-212 genes were coexpressed, significant amounts of non-endogenous Asx were obtained accompanied by a strong decrease in ß-car content. Asx accumulation was higher (approximately 50% of total carotenoids) when CrtZ was cloned upstream of CrtW, but still significant (approximately 30%) when the position of genes was inverted. Therefore, the engineered strains constitute a useful tool for investigating the ketocarotenoid biosynthetic pathway in cyanobacteria and an excellent starting point for further optimisation and industrial exploitation of these organisms for the production of added-value compounds.


Assuntos
Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Oxigenases de Função Mista/metabolismo , Zeaxantinas/metabolismo
6.
J Exp Clin Cancer Res ; 37(1): 170, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045750

RESUMO

BACKGROUND: Chronic myelogenous leukemia (CML) is a myeloproliferative disorder caused by expression of the chimeric BCR-ABL tyrosine kinase oncogene, resulting from the t(9;22) chromosomal translocation. Imatinib (gleevec, STI-571) is a selective inhibitor of BCR-ABL activity highly effective in the treatment of CML. However, even though almost all CML patients respond to treatment with imatinib or third generation inhibitors, these drugs are not curative and need to be taken indefinitely or until patients become resistant. Therefore, to get a definitive eradication of leukemic cells, it is necessary to find novel therapeutic combinations, for achieving greater efficacy and fewer side effects. Curcumin is an Indian spice with several therapeutic properties: anti-oxidant, analgesic, anti-inflammatory, antiseptic and anti-cancer. In cancer disease, it acts by blocking cell transformation, proliferation, and invasion and by inducing cell apoptosis. METHODS: In the present study, the effect of a sub-toxic dose of curcumin on K562 cells was evaluated by using the technique of Sequential Window Activation of All Theoretical Mass Spectra (SWATH-MS). Bioinformatic analysis of proteomic data was performed to highlight the pathways mostly affected by the treatment. The involvement of Hypoxia inducible factor 1 α (HIF-1α) was assayed by evaluating its activation status and the modulation of importin 7 (IPO7) and miR-22 was assessed by quantitative PCR and western blot analysis. Finally, K562 cells transfected with miR-22 inhibitor were used to confirm the ability of curcumin to elicit miR-22 expression. RESULTS: Our findings revealed that the most relevant effect induced by curcumin was a consistent decrease of several proteins involved in glucose metabolism, most of which were HIF-1α targets, concomitant with the up-regulation of functional and structural mitochondrial proteins. The mechanism by which curcumin affects metabolic enzyme profile was associated with the reduction of HIF-1α activity, due to the miR-22-mediated down-regulation of IPO7 expression. Finally, the ability of curcumin to enhance in vitro the efficiency of imatinib was reported. CONCLUSIONS: In summary, our data indicates that the miR-22/IPO7/HIF-1α axis may be considered as a novel molecular target of curcumin adding new insights to better define therapeutic activity and anticancer properties of this natural compound. The MS proteomic data have been deposited to the ProteomeXchange with identifier .


Assuntos
Curcumina/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Carioferinas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , MicroRNAs/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular Tumoral , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Espectrometria de Massas/métodos , MicroRNAs/antagonistas & inibidores , Proteômica/métodos , Transfecção
7.
J Exp Clin Cancer Res ; 37(1): 82, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29653539

RESUMO

BACKGROUND: Our previous study demonstrates that Citrus-limon derived nanovesicles are able to decrease colon cancer cell viability, and that this effect is associated with the downregulation of the intracellular phospholipase DDHD domain-containing protein 1 (DDHD1). While few studies are currently available on the contribution of DDHD1 in neurological disorders, there is no information on its role in cancer. This study investigates the role of DDHD1 in colon cancer. METHODS: DDHD1 siRNAs and an overexpression vector were transfected into colorectal cancer and normal cells to downregulate or upregulate DDHD1 expression. In vitro and in vivo assays were performed to investigate the functional role of DDHD1 in colorectal cancer cell growth. Quantitative proteomics using SWATH-MS was performed to determinate the molecular effects induced by DDHD1 silencing in colorectal cancer cells. RESULTS: The results indicate that DDHD1 supports colon cancer cell proliferation and survival, since its downregulation reduces in vitro colon cancer cell viability and increases apoptosis rate, without affecting normal cells. On the contrary, in vivo studies demonstrate that the xenograft tumors, derived from DDHD1-overexpressing cells, have a higher proliferation rate compared to control animals. Additionally, we found that functional categories, significantly affected by DDHD1 silencing, were specifically related to cancer phenotype and for the first time associated to DDHD1 activity. CONCLUSIONS: In conclusion, this study provides the first evidence confirming the role of DDHD1 in cancer, providing a possibility to define a new target to design more effective therapies for colon cancer patients.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Neoplasias Colorretais/metabolismo , Terapia de Alvo Molecular , Fosfolipases/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Inativação Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfolipases/genética , Fosfolipases/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
8.
RSC Adv ; 8(16): 8638-8656, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35539867

RESUMO

A small series of Morita-Baylis-Hillman adduct (MBHA) derivatives was synthesized and made to react with imidazole, N-acetylhistidine, and N-acetylhexahistidine as models of poly-histidine derivatives. Intriguingly, the reaction of MBHA derivatives 1a and b with imidazole in acetonitrile-phosphate buffered saline (PBS) gave the imidazolium salt biadducts 3a and b as the main reaction products. These results were confirmed by experiments performed with N-acetylhistidine and 1b and suggested the possible occurrence of these structures in the products of poly-histidine labeling with MBHA derivatives 1a and b. These compounds were then transformed into the corresponding water-soluble derivatives 1c-e by introducing oligo(ethylene glycol) chains and their reactivity was evaluated in preliminary experiments with imidazole and then with N-acetylhexahistidine in PBS. The structure of polymeric materials Ac-His-6-MBHA-1d and Ac-His-6-MBHA-1e obtained using ten-fold excesses of compounds 1d and e was investigated using mass spectrometry, NMR spectroscopy, and photophysical studies, which suggested the presence of biadduct residues in both polymeric materials. These results provide the basis for the preparation of fishbone-like polymer brushes, the characterization of their properties, and the exploration of their potential applications in different fields of science such as in vivo fluorogenic labeling, fluorescence microscopy, protein PEGylation, up to the production of smart materials and biosensors.

9.
J Proteomics ; 173: 1-11, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29197582

RESUMO

We have previously isolated exosome-like nanoparticles from Citrus-limon juice, able to inhibit in vitro and in vivo tumor cell growth. In order to deeply understand the mechanism underlying nanovesicle effects, we performed a proteomic profile of treated colorectal cancer cells. Among the proteins differentially expressed after nanovesicle treatment, we found a significant downregulation of the Acetyl-CoA Carboxylase 1 (ACACA) and we demonstrated that silencing ACACA in cancer cells leads to a reduction of cell growth. Our study proved that the anti-tumor effects of Citrus-limon nanovesicles is partly mediated by lipid metabolism inhibition, in particular via ACACA downregulation. SIGNIFICANCE: This study represents the attempt to achieve, by a proteomic approach, a better understanding of the role of lemon nanovesicles in affecting colorectal cancer cell growth.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Citrus/toxicidade , Neoplasias do Colo/tratamento farmacológico , Exossomos/química , Proteômica/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Exossomos/fisiologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos
10.
J Cell Physiol ; 233(2): 1558-1573, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28621452

RESUMO

Low-intensity pulsed ultrasound (LIPUS) as an adjuvant therapy in in vitro and in vivo bone engineering has proven to be extremely useful. The present study aimed at investigating the effect of 30 mW/cm2 LIPUS stimulation on commercially available human mesenchymal stem cells (hMSCs) cultured in basal or osteogenic medium at different experimental time points (7, 14, 21 days). The hypothesis was that LIPUS would improve the osteogenic differentiation of hMSC and guarantying the maintenance of osteogenic committed fraction, as demonstrated by cell vitality and proteomic analysis. LIPUS stimulation (a) regulated the balance between osteoblast commitment and differentiation by specific networks (activations of RhoA/ROCK signaling and upregulation of Ribosome constituent/Protein metabolic process, Glycolysis/Gluconeogenesis, RNA metabolic process/Splicing and Tubulins); (b) allowed the maintenance of a few percentage of osteoblast precursors (21 days CD73+/CD90+: 6%; OCT-3/4+/NANOG+/SOX2+: 10%); (c) induced the activation of osteogenic specific pathways shown by gene expression (early: ALPL, COL1A1, late: RUNX2, BGLAP, MAPK1/6) and related protein release (COL1a1, OPN, OC), in particular in the presence of osteogenic soluble factors able to mimic bone microenvironment. To summarize, LIPUS might be able to improve the osteogenic commitment of hMSCs in vitro, and, at the same time, enhance their osteogenic differentiation.


Assuntos
Diferenciação Celular/efeitos da radiação , Células-Tronco Mesenquimais/efeitos da radiação , Osteogênese/efeitos da radiação , Ondas Ultrassônicas , Linhagem da Célula , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Mapas de Interação de Proteínas , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos da radiação , Nicho de Células-Tronco , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
J Proteome Res ; 16(12): 4319-4329, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28828861

RESUMO

The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.


Assuntos
Mitocôndrias/química , Proteoma/fisiologia , Proteômica/normas , Linhagem Celular , Cromatografia Líquida , Humanos , Itália , Proteínas Mitocondriais/análise , Mapas de Interação de Proteínas/fisiologia , Espectrometria de Massas em Tandem
12.
Sci Rep ; 7(1): 9388, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839232

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) is a GPI-anchored cell membrane receptor that focuses urokinase (uPA) proteolytic activity on the cell surface. Its expression is increased in many human cancers, including non-small cell lung cancer (NSCLC) and colorectal cancer (CRC), and correlates with a poor prognosis and early invasion and metastasis. uPAR is able to control, through a cross-talk with tyrosine kinase receptors, the shift between tumor dormancy and proliferation, that usually precedes metastasis formation. Therefore, we investigated the role of uPAR expression in RAS mutated NSCLC and CRC cells. In this study we provided evidence, for the first time, that RAS mutational condition is functionally correlated to uPAR overexpression in NSCLC and CRC cancer cell lines and patient-derived tissue samples. Moreover, oncogenic features related to uPAR overexpression in RAS mutated NSCLC and CRC, such as adhesion, migration and metastatic process may be targeted, in vitro and in vivo, by new anti-uPAR small molecules, specific inhibitors of uPAR-vitronectin interaction. Therefore, anti-uPAR drugs could represent an effective pharmacological strategy for NSCLC and CRC patients carrying RAS mutations.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/genética , Neoplasias/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Proteínas ras/genética , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
13.
J Extracell Vesicles ; 6(1): 1321455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717418

RESUMO

Bioinformatics tools are imperative for the in depth analysis of heterogeneous high-throughput data. Most of the software tools are developed by specific laboratories or groups or companies wherein they are designed to perform the required analysis for the group. However, such software tools may fail to capture "what the community needs in a tool". Here, we describe a novel community-driven approach to build a comprehensive functional enrichment analysis tool. Using the existing FunRich tool as a template, we invited researchers to request additional features and/or changes. Remarkably, with the enthusiastic participation of the community, we were able to implement 90% of the requested features. FunRich enables plugin for extracellular vesicles wherein users can download and analyse data from Vesiclepedia database. By involving researchers early through community needs software development, we believe that comprehensive analysis tools can be developed in various scientific disciplines.

14.
Sci Rep ; 7(1): 4711, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680152

RESUMO

The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/secundário , Endotélio/metabolismo , Exossomos/metabolismo , Linhagem Celular Tumoral , Plasticidade Celular , Neoplasias do Colo/patologia , Endotélio/patologia , Exossomos/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Permeabilidade , Fenótipo , Proteômica , Transdução de Sinais , Trombina/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
15.
Theranostics ; 7(5): 1333-1345, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435469

RESUMO

Despite Imatinib (IM), a selective inhibitor of Bcr-Abl, having led to improved prognosis in Chronic Myeloid Leukemia (CML) patients, acquired resistance and long-term adverse effects is still being encountered. There is, therefore, urgent need to develop alternative strategies to overcome drug resistance. According to the molecules expressed on their surface, exosomes can target specific cells. Exosomes can also be loaded with a variety of molecules, thereby acting as a vehicle for the delivery of therapeutic agents. In this study, we engineered HEK293T cells to express the exosomal protein Lamp2b, fused to a fragment of Interleukin 3 (IL3). The IL3 receptor (IL3-R) is overexpressed in CML blasts compared to normal hematopoietic cells and thus is able to act as a receptor target in a cancer drug delivery system. Here we show that IL3L exosomes, loaded with Imatinib or with BCR-ABL siRNA, are able to target CML cells and inhibit in vitro and in vivo cancer cell growth.


Assuntos
Antineoplásicos/farmacocinética , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Exossomos/metabolismo , Mesilato de Imatinib/farmacocinética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Receptores de Interleucina-3/metabolismo , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células HEK293 , Xenoenxertos , Humanos , Mesilato de Imatinib/administração & dosagem , Camundongos , Resultado do Tratamento
16.
ACS Omega ; 2(9): 5453-5459, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31457813

RESUMO

In order to obtain new fluorophores potentially useful in imidazole labeling and subsequent conjugation, a small series of Morita-Baylis-Hillman acetates (3a-c) was designed, synthesized, and reacted with imidazole. The optical properties of the corresponding imidazole derivatives 4a-c were analyzed both in solution and in the solid state. Although the solutions display a very weak emission, the powders show a blue emission, particularly enhanced in the case of compound 4c possessing two methoxy groups in the cinnamic scaffold. The photophysical study confirmed the hypothesis that the molecular rigidity of the solid state enhances the emission properties of these compounds by triggering the restriction of intramolecular motions, paving the way for their applications in fluorogenic labeling.

17.
Faraday Discuss ; 196: 143-161, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27901153

RESUMO

We report the design, synthesis, molecular optical properties, and solid state emissive behaviour of a series of novel compounds, which, similar to the archetypal AIE luminogen tetraphenylethene, are formed of a central olefin stator and decorated with either three or four rotors. These rotors, being either electron-rich substituted benzenes, or electron-withdrawing functional groups (esters, ketones, cyano groups) confer a "push-pull" character to the overall molecular structure. Building on both new and already published contributions, a comprehensive picture of the properties and the potential of these compounds is provided.

18.
J Enzyme Inhib Med Chem ; 31(sup4): 45-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27535298

RESUMO

The PID1/NYGGF4/PCLI1 gene encodes for a protein with a phosphotyrosine-binding domain, which interacts with the lipoprotein receptor-related protein 1. Previous work by us and others suggested a function of the gene in cell proliferation of NIH3T3 fibroblasts and 3T3-L1 pre-adipocytes. The molecular characterization of PCLI1 protein, ectopically expressed in NIH3T3 fibroblasts, revealed two phosphorylation sites at Ser154 and Ser165. In order to clarify the functions of this gene, we analyzed the effects of its downregulation on cellular proliferation and cell cycle progression in NIH3T3 cell cultures. Downregulation of PID1/NYGGF4/PCLI1 mRNA levels by short hairpin RNAs (shRNAs) elicited decreased proliferation rate in mammalian cell lines; cell cycle analysis of serum-starved, synchronized NIH3T3 fibroblasts showed an increased accumulation of shRNA-interfered cells in the G1 phase. Decreased levels of FOS and MYC mRNAs were accordingly associated with these events. The molecular scenario emerging from our data suggests that PID1/NYGGF4/PCLI1 controls cellular proliferation and cell cycle progression in NIH3T3 cells.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclo Celular , Regulação para Baixo , Fibroblastos/citologia , Fibroblastos/metabolismo , Animais , Proteínas de Transporte/biossíntese , Ciclo Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Camundongos , Células NIH 3T3 , Interferência de RNA , RNA Interferente Pequeno/genética , Relação Estrutura-Atividade
19.
Oncotarget ; 7(21): 30420-39, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27050372

RESUMO

Tumor derived exosomes are vesicles which contain proteins and microRNAs that mediate cell-cell communication and are involved in angiogenesis and tumor progression. Curcumin derived from the plant Curcuma longa, shows anticancer effects. Exosomes released by CML cells treated with Curcumin contain a high amount of miR-21 that is shuttled into the endothelial cells in a biologically active form. The treatment of HUVECs with CML Curcu-exosomes reduced RhoB expression and negatively modulated endothelial cells motility. We showed that the addition of CML control exosomes to HUVECs caused an increase in IL8 and VCAM1 levels, but Curcu-exosomes reversed these effects thus attenuating their angiogenic properties. This antiangiogenic effect was confirmed with in vitro and in vivo vascular network formation assays. SWATH analysis of the proteomic profile of Curcu-exosomes revealed that Curcumin treatment deeply changes their molecular properties, in particular, Curcumin induces a release of exosomes depleted in pro-angiogenic proteins and enriched in proteins endowed with anti-angiogenic activity. Among the proteins differential expressed we focused on MARCKS, since it was the most modulated protein and a target of miR-21. Taken together our data indicated that also Curcumin attenuates the exosome's ability to promote the angiogenic phenotype and to modulate the endothelial barrier organization.


Assuntos
Curcumina/farmacologia , Exossomos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Substrato Quinase C Rico em Alanina Miristoilada/genética , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos
20.
Oncotarget ; 6(23): 19514-27, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26098775

RESUMO

Nanosized vesicles are considered key players in cell to cell communication, thus influencing physiological and pathological processes, including cancer. Nanovesicles have also been found in edible-plants and have shown therapeutic activity in inflammatory bowel diseases; however information on their role in affecting cancer progression is missing.Our study identify for the first time a fraction of vesicles from lemon juice (Citrus limon L.), obtained as a result of different ultracentrifugation, with density ranging from 1,15 to 1,19 g/ml and specific proteomic profile. By using an in vitro approach, we show that isolated nanovesicles inhibit cancer cell proliferation in different tumor cell lines, by activating a TRAIL-mediated apoptotic cell death. Furthermore, we demonstrate that lemon nanovesicles suppress CML tumor growth in vivo by specifically reaching tumor site and by activating TRAIL-mediated apoptotic cell processes. Overall, this study suggests the possible use of plant-edible nanovesicles as a feasible approach in cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citrus , Exossomos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Nanopartículas , Extratos Vegetais/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Carga Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citrus/química , Exossomos/química , Exossomos/metabolismo , Sucos de Frutas e Vegetais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Proteínas de Plantas/análise , Plantas Medicinais , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...