Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7959): 105-110, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020019

RESUMO

Rates of ice-sheet grounding-line retreat can be quantified from the spacing of corrugation ridges on deglaciated regions of the seafloor1,2, providing a long-term context for the approximately 50-year satellite record of ice-sheet change3-5. However, the few existing examples of these landforms are restricted to small areas of the seafloor, limiting our understanding of future rates of grounding-line retreat and, hence, sea-level rise. Here we use bathymetric data to map more than 7,600 corrugation ridges across 30,000 km2 of the mid-Norwegian shelf. The spacing of the ridges shows that pulses of rapid grounding-line retreat, at rates ranging from 55 to 610 m day-1, occurred across low-gradient (±1°) ice-sheet beds during the last deglaciation. These values far exceed all previously reported rates of grounding-line retreat across the satellite3,4,6,7 and marine-geological1,2 records. The highest retreat rates were measured across the flattest areas of the former bed, suggesting that near-instantaneous ice-sheet ungrounding and retreat can occur where the grounding line approaches full buoyancy. Hydrostatic principles show that pulses of similarly rapid grounding-line retreat could occur across low-gradient Antarctic ice-sheet beds even under present-day climatic forcing. Ultimately, our results highlight the often-overlooked vulnerability of flat-bedded areas of ice sheets to pulses of extremely rapid, buoyancy-driven retreat.

2.
Nature ; 552(7684): 225-229, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29239353

RESUMO

Antarctica's continental-scale ice sheets have evolved over the past 50 million years. However, the dearth of ice-proximal geological records limits our understanding of past East Antarctic Ice Sheet (EAIS) behaviour and thus our ability to evaluate its response to ongoing environmental change. The EAIS is marine-terminating and grounded below sea level within the Aurora subglacial basin, indicating that this catchment, which drains ice to the Sabrina Coast, may be sensitive to climate perturbations. Here we show, using marine geological and geophysical data from the continental shelf seaward of the Aurora subglacial basin, that marine-terminating glaciers existed at the Sabrina Coast by the early to middle Eocene epoch. This finding implies the existence of substantial ice volume in the Aurora subglacial basin before continental-scale ice sheets were established about 34 million years ago. Subsequently, ice advanced across and retreated from the Sabrina Coast continental shelf at least 11 times during the Oligocene and Miocene epochs. Tunnel valleys associated with half of these glaciations indicate that a surface-meltwater-rich sub-polar glacial system existed under climate conditions similar to those anticipated with continued anthropogenic warming. Cooling since the late Miocene resulted in an expanded polar EAIS and a limited glacial response to Pliocene warmth in the Aurora subglacial basin catchment. Geological records from the Sabrina Coast shelf indicate that, in addition to ocean temperature, atmospheric temperature and surface-derived meltwater influenced East Antarctic ice mass balance under warmer-than-present climate conditions. Our results imply a dynamic EAIS response with continued anthropogenic warming and suggest that the EAIS contribution to future global sea-level projections may be under-estimated.


Assuntos
Congelamento , Camada de Gelo/química , Temperatura , Regiões Antárticas , Diatomáceas/isolamento & purificação , Foraminíferos/isolamento & purificação , Fósseis , Aquecimento Global/estatística & dados numéricos , Camada de Gelo/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...