Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(3): 501-514, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36383394

RESUMO

Tree breeding programs and wood industries require simple, time- and cost-effective techniques to process large volumes of samples. In recent decades, near-infrared spectroscopy (NIRS) has been acknowledged as one of the most powerful techniques for wood analysis, making it the most used tool for high-throughput phenotyping. Previous studies have shown that a significant number of anatomical, physical, chemical and mechanical wood properties can be estimated through NIRS, both for angiosperm and gymnosperm species. However, the ability of this technique to predict functional traits related to drought resistance has been poorly explored, especially in angiosperm species. This is particularly relevant since determining xylem hydraulic properties by conventional techniques is complex and time-consuming, clearly limiting its use in studies and applications that demand large amounts of samples. In this study, we measured several wood anatomical and hydraulic traits and collected NIR spectra in branches of two Eucalyptus L'Hér species. We developed NIRS calibration models and discussed their ability to accurately predict the studied traits. The models generated allowed us to adequately calibrate the reference traits, with high R2 (≥0.75) for traits such as P12, P88, the slope of the vulnerability curves to xylem embolism or the fiber wall fraction, and with lower R2 (0.39-0.52) for P50, maximum hydraulic conductivity or frequency of ray parenchyma. We found that certain wavenumbers improve models' calibration, with those in the range of 4000-5500 cm-1 predicting the highest number of both anatomical and functional traits. We concluded that the use of NIRS allows calibrating models with potential predictive value not only for wood structural and chemical variables but also for anatomical and functional traits related to drought resistance in wood types with complex structure as eucalypts. These results are promising in light of the required knowledge about species and genotypes adaptability to global climatic change.


Assuntos
Eucalyptus , Magnoliopsida , Madeira , Espectroscopia de Luz Próxima ao Infravermelho , Xilema , Árvores , Água , Secas
2.
Front Plant Sci ; 12: 575090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093599

RESUMO

Willows are widely planted in areas under risk of flooding. The physiological responses of willows to flooding have been characterized, but little is known about their responses during the post-flooding period. After the end of the stress episode, plants may modify some traits to compensate for the biomass loss during flooding. The aim of this work was to analyze the post-flooding physiological responses of willow under two different depths of stagnant floodwater. Cuttings of Salix matsudana NZ692 clone were planted in pots in a greenhouse. The experiment started when the plants were 2 months old with the following treatments: Control plants (watered to field capacity); plants partially flooded 10 cm above soil level (F10) and plants partially flooded 40 cm above soil level (F40). The flooding episode lasted 35 days and was followed by a recovery period of 28 days (post-flooding period). After the flooding period, height, diameter and total biomass were higher in F10, while F40 plants showed an increase in plant adventitious root production and leaf nitrogen content. During the post-flooding period, the photosynthetic rate, nitrogen, chlorophyll and soluble sugar contents were significantly higher in leaves of F40 than in Control and F10 treatments. Stomatal conductance and specific leaf area were higher in the previously flooded plants compared to Control treatment. Plants from F10 treatments showed a higher growth in height, root-to-shoot ratio, and carbon isotope discrimination than F40, while the opposite occurred for growth in diameter, vessel size and leaf area. We conclude that depth of floodwater not only causes different responses during flooding, but that its effects are also present in the post-flooding recovery period, affecting the growth and physiology of willows once the stress episode has ended. Even when flooding impacted growth negatively in F40, in the post-flooding period these plants compensated by increasing the photosynthetic rate, plant leaf area and xylem vessel size. Willows endurance to flooding is the result of both responses during flooding, and plastic responses during post-flooding.

3.
Tree Physiol ; 38(2): 243-251, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29177476

RESUMO

Wood density can be considered as a measure of the internal wood structure, and it is usually used as a proxy measure of other mechanical and functional traits. Eucalyptus is one of the most important commercial forestry genera worldwide, but the relationship between wood density and vulnerability to cavitation in this genus has been little studied. The analysis is hampered by, among other things, its anatomical complexity, so it becomes necessary to address more complex techniques and analyses to elucidate the way in which the different anatomical elements are functionally integrated. In this study, vulnerability to cavitation in two races of Eucalyptus globulus Labill. with different wood density was evaluated through Path analysis, a multivariate method that allows evaluation of descriptive models of causal relationship between variables. A model relating anatomical variables with wood properties and functional parameters was proposed and tested. We found significant differences in wood basic density and vulnerability to cavitation between races. The main exogenous variables predicting vulnerability to cavitation were vessel hydraulic diameter and fibre wall fraction. Fibre wall fraction showed a direct impact on wood basic density and the slope of vulnerability curve, and an indirect and negative effect over the pressure imposing 50% of conductivity loss (P50) through them. Hydraulic diameter showed a direct negative effect on P50, but an indirect and positive influence over this variable through wood density on one hand, and through maximum hydraulic conductivity (ks max) and slope on the other. Our results highlight the complexity of the relationship between xylem efficiency and safety in species with solitary vessels such as Eucalyptus spp., with no evident compromise at the intraspecific level.


Assuntos
Eucalyptus/anatomia & histologia , Madeira/anatomia & histologia , Análise Multivariada , Xilema
4.
Tree Physiol ; 36(12): 1485-1497, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614358

RESUMO

The relationship between hydraulic specific conductivity (ks) and vulnerability to cavitation (VC) with size and number of vessels has been studied in many angiosperms. However, few of the studies link other cell types (vasicentric tracheids (VT), fibre-tracheids, parenchyma) with these hydraulic functions. Eucalyptus is one of the most important genera in forestry worldwide. It exhibits a complex wood anatomy, with solitary vessels surrounded by VT and parenchyma, which could serve as a good model to investigate the functional role of the different cell types in xylem functioning. Wood anatomy (several traits of vessels, VT, fibres and parenchyma) in conjunction with maximum ks and VC was studied in adult trees of commercial species with medium-to-high wood density (Eucalyptus globulus Labill., Eucalyptus viminalis Labill. and Eucalyptus camaldulensis Dehnh.). Traits of cells accompanying vessels presented correlations with functional variables suggesting that they contribute to both increasing connectivity between adjacent vessels-and, therefore, to xylem conduction efficiency-and decreasing the probability of embolism propagation into the tissue, i.e., xylem safety. All three species presented moderate-to-high resistance to cavitation (mean P50 values = -2.4 to -4.2 MPa) with no general trade-off between efficiency and safety at the interspecific level. The results in these species do not support some well-established hypotheses of the functional meaning of wood anatomy.


Assuntos
Eucalyptus/fisiologia , Xilema/fisiologia , Eucalyptus/citologia , Modelos Biológicos , Transpiração Vegetal , Água/metabolismo , Xilema/citologia
5.
Tree Physiol ; 33(3): 241-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23355634

RESUMO

Plants of Pinus taeda L. from each of four families were fertilized with nitrogen (N), phosphorus (P) or N + P at planting. The H family had the highest growth in dry mass while the L family had the lowest growth. Measurements of plant hydraulic architecture traits were performed during the first year after planting. Stomatal conductance (gs), water potential at predawn (Ψpredawn) and at midday (Ψmidday), branch hydraulic conductivity (ks and kl) and shoot hydraulic conductance (K) were measured. One year after planting, dry weight partitioning of all aboveground organs was performed. Phosphorus fertilization increased growth in all four families, while N fertilization had a negative effect on growth. L family plants were more negatively affected than H family plants. This negative effect was not due to limitations in N or P uptake because plants from all the families and treatments had the same N and P concentration in the needles. Phosphorus fertilization changed some hydraulic parameters, but those changes did not affect growth. However, the negative effect of N can be explained by changes in hydraulic traits. L family plants had a high leaf dry weight per branch, which was increased by N fertilization. This change occurred together with a decrease in shoot conductance. Therefore, the reduction in gs was not enough to avoid the drop in Ψmidday. Consequently, stomatal closure and the deficient water status of the needles resulted in a reduction in growth. In H family plants, the increase in the number of needles per branch due to N fertilization was counteracted by a reduction in gs and also by a reduction in tracheid lumen size and length. Because of these two changes, Ψmidday did not drop and water availability in the needles was adequate for sustained growth. In conclusion, fertilization affects the hydraulic architecture of plants, and different families develop different strategies. Some of the hydraulic changes can explain the negative effect of N fertilization on growth.


Assuntos
Nitrogênio/farmacologia , Fósforo/farmacologia , Pinus taeda/fisiologia , Argentina , Biomassa , Fertilizantes/efeitos adversos , Variação Genética , Umidade , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Pinus taeda/efeitos dos fármacos , Pinus taeda/genética , Pinus taeda/crescimento & desenvolvimento , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Temperatura , Árvores , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...