Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 134(4): 740-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25962878

RESUMO

The glutamate metabotropic receptor 5 (mGluR5) and the adenosine A2A receptor (A2A R) represent major non-dopaminergic therapeutic targets in Parkinson's disease (PD) to improve motor symptoms and slow down/revert disease progression. The 6-hydroxydopamine rat model of PD was used to determine/compare the neuroprotective and behavioral impacts of single and combined administration of one mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), and two A2A R antagonists, (E)-phosphoric acid mono-[3-[8-[2-(3-methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-ynyl-1,2,6,7-tetrahydropurin-3-yl]propyl] (MSX-3) and 8-ethoxy-9-ethyladenine (ANR 94). Chronic treatment with MPEP or MSX-3 alone, but not with ANR 94, reduced the toxin-induced loss of dopaminergic neurons in the substantia nigra pars compacta. Combining MSX-3 and MPEP further improved the neuroprotective effect of either antagonists. At the behavioral level, ANR 94 and MSX-3 given alone significantly potentiated L-DOPA-induced turning behavior. Combination of either A2A R antagonists with MPEP synergistically increased L-DOPA-induced turning. This effect was dose-dependent and required subthreshold drug concentration, which per se had no motor stimulating effect. Our findings suggest that co-treatment with A2A R and mGluR5 antagonists provides better therapeutic benefits than those produced by either drug alone. Our study sheds some light on the efficacy and advantages of combined non-dopaminergic PD treatment using low drug concentration and establishes the basis for in-depth studies to identify optimal doses at which these drugs reach highest efficacy. Combined treatment with low concentrations of known adenosine A2A receptor (A2A R) and metabotropic glutamate receptor (mGluR5) antagonists results in a therapeutic benefit and provides better results than those produced by either drug given alone, both in terms of motor performance and neuroprotection. Future trials should involve careful optimization of drug combinations and concentrations that may avoid the emergence of debilitating side effects and slow-down/revert disease progression.


Assuntos
Levodopa/administração & dosagem , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/tratamento farmacológico , Antagonistas de Receptores Purinérgicos P1/administração & dosagem , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Adenina/administração & dosagem , Adenina/análogos & derivados , Animais , Sistemas de Liberação de Medicamentos/métodos , Sinergismo Farmacológico , Masculino , Neurônios/efeitos dos fármacos , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/psicologia , Piridinas/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Rotação , Resultado do Tratamento , Xantinas/administração & dosagem
2.
J Neuropathol Exp Neurol ; 73(5): 414-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24709676

RESUMO

The development of nondopaminergic therapeutic strategies that may improve motor and nonmotor deficits, while possibly slowing down the neurodegenerative process and associated neuroinflammation,is a primary goal of Parkinson disease (PD) research. We investigated the neuroprotective and anti-inflammatory potential of combined and single treatment with adenosine A2A and cannabinoid CB1 receptor antagonists MSX-3 and rimonabant, respectively, in a rodent model of PD. Rats bearing a unilateral intrastriatal 6-hydroxydopamine lesion were treated chronically with MSX-3 (0.5or 1 mg/kg/d) and rimonabant (0.1 mg/kg/d) given as monotherapy or combined. The effects of the treatments to counteract dopaminergic cell death and neuroinflammation were assessed by immunohistochemistry for tyrosine hydroxylase and glial cell markers, respectively. Both rimonabant and MSX-3 (1 mg/kg/d) promoted dopaminergic neuron survival in the substantia nigra pars compacta (SNc) when given alone; this effect was weakened when the compounds were combined. Glial activation was not significantly affected by MSX-3 (1 mg/kg/d), whereas rimonabant seemed to increase astrocyte cell density in the SNc. Our findings demonstrate the neuroprotective potential of single treatments and suggest that glial cells might be involved in this protective effect. The results also indicate that the neuroprotective potential of combined therapy may not necessarily reflect or promote single-drug effects and point out that special care should be taken when considering multidrug therapies in PD.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Modelos Animais de Doenças , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/prevenção & controle , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/patologia , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto , Xantinas/farmacologia , Xantinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...