Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(3): e0264546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35231031

RESUMO

We survey the network properties and response to damage sustained of road networks of cities worldwide, using OpenStreetMap (OSM) data. We find that our primary damage response variable [Formula: see text], which is the average shortest time needed to reach all nodes in a road network (which stand in for locations within a metropolitan area) from an initial node (which stands in for the location of a center for disaster relief operations), is strongly linearly-correlated with pd, the fraction of the road network segments damaged. We find that this result, previously reported for a city's road network as opposed to grid and scale-free idealizations, is widely present across the road networks we have examined regardless of location. Furthermore, we identify three families of road networks according to their damage response, forming a typology by which we can classify city road networks. Using this typology, we identify the family of road networks which may be of most concern from a humanitarian standpoint. We also find that, of the properties of the road networks we examined, the average shortest path length, 〈lmin〉 and the average node degree, 〈k〉, proxies for city road network size and complexity respectively, are very significantly-correlated with damage susceptibility. In addition to forming a damage response typology by which city road networks could be classified, we consider five cities in detail, looking at risks and previous disaster events. Our results offer a generalizable framework in evaluating the feasibility of coursing relief efforts within disaster-affected areas using land-based transportation methods. They also provide, albeit in retrospect, a glimpse of the time difficulties which occurred, and the stakes of life involved in the humanitarian crisis which developed in the Kathmandu area due to the earthquakes of April and May 2015.


Assuntos
Terremotos , Meios de Transporte , Cidades
2.
J Gerontol A Biol Sci Med Sci ; 75(10): 1913-1920, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31179487

RESUMO

BACKGROUND: Biological age (BA) is a more accurate measure of the rate of human aging than chronological age (CA). However, there is limited consensus regarding measures of BA in life span and healthspan. METHODS: This study investigated measurement sets of 68 physiological biomarkers using data from 2,844 Chinese Singaporeans in two age subgroups (55-70 and 71-94 years) in the Singapore Longitudinal Aging Study (SLAS-2) with 8-year follow-up frailty and mortality data. We computed BA estimate using three commonly used algorithms: Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Klemera and Doubal (KD) method, and additionally, explored the use of machine learning methods for prediction of mortality and frailty. The most optimal algorithmic estimate of BA compared to CA was evaluated for their associations with risk factors and health outcome. RESULTS: Stepwise selection procedures resulted in the final selection of 8 biomarkers in males and 10 biomarkers in females. The highest-ranking biomarkers were estimated glomerular filtration rate for both genders, and the forced expiratory volume in 1 second in males and females. The BA estimates robustly predicted frailty and mortality and outperformed CA. The best performing KD measure of BA was notably predictive in the younger group (aged 55-70 years). BA estimates obtained using a machine learning train-test method were not more accurate than conventional BA estimates in predicting mortality and frailty in most situations. Biologically older people with the same CA as biologically younger individuals had higher prevalence of frailty and 8-year mortality, and worse health, behavioral, and functional characteristics. CONCLUSIONS: BA is better than CA for measuring life span (mortality) and healthspan (frailty). This measurement set of physiological markers of biological aging among Chinese robustly differentiate biologically old from younger individuals with the same CA.


Assuntos
Envelhecimento/fisiologia , Biomarcadores/análise , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Feminino , Volume Expiratório Forçado , Fragilidade , Taxa de Filtração Glomerular , Humanos , Longevidade , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Mortalidade/tendências , Valor Preditivo dos Testes , Fatores de Risco , Singapura
3.
Phys Rev E ; 96(4-1): 042308, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29347563

RESUMO

It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...