Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514670

RESUMO

In this paper, a microwave monolithic integrated circuit (MMIC) high-power amplifier (HPA) for Ku-band active radar applications based on gallium nitride on silicon (GaN-on-Si) is presented. The design is based on a three-stage architecture and was implemented using the D01GH technology provided by OMMIC foundry. Details on the architecture definition and design process to maximize delivered power are provided along with stability and thermal analyses. To optimize the amplifier performance, an asymmetry was included at the output combiner. Experimental results show that the HPA achieves a 39.5 dBm pulsed-mode output power, a peak linear gain of 23 dB, a drain efficiency of 27%, and good input/output matching in the 16-19 GHz frequency range. The chip area is 5 × 3.5 mm2 and for the measurements was mounted on a custom-made module. These results demonstrate that GaN-on-Si-based Solid-State Power Amplifiers (SSPAs) can be used for the implementation of Ku-band active radars.

2.
Micromachines (Basel) ; 14(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37374769

RESUMO

This paper presents a novel and compact vector modulator (VM) architecture implemented in 130 nm SiGe BiCMOS technology. The design is suitable for use in receive phased arrays for the gateways of major low Earth orbit (LEO) constellations that operate in the 17.8 to 20.2 GHz frequency range. The proposed architecture uses four variable gain amplifiers (VGA) that are active at any given time and are switched to generate the four quadrants. Compared to conventional architectures, this structure is more compact and produces double the output amplitude. The design offers 6-bit phase control for 360°, and the total root mean square (RMS) phase and gain errors are 2.36° and 1.46 dB, respectively. The design occupies an area of 1309.4 µm × 1783.8 µm (including pads).

3.
Environ Pollut ; 268(Pt B): 115510, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221612

RESUMO

Estuaries provide critical habitat for food webs supporting fish and shellfish consumed by humans, but estuarine ecosystem health has been threatened by increases in nitrogen loading as well as inputs of the neurotoxin, mercury (Hg), which biomagnifies in food webs and poses risk to humans and wildlife. In this study, the effects of nutrient loading on the fate of Hg in shallow coastal estuaries were examined to evaluate if their interaction enhances or reduces Hg bioavailability in sediments, the water column, and concentrations in lower trophic level fish (Fundulus heteroclitus and Menidia menidia). Multiple sites were sampled within two human impacted coastal lagoons, Great South Bay (GSB) and Jamaica Bay (JB), on the southern coast of Long Island, NY, United States of America (U.S.A.). Carbon (C), nitrogen (N), sulfur (S), Hg, and methylmercury (MeHg) were measured in surface sediments and the water column, and total Hg (THg) was measured in two species of forage fish. Minimal differences were found in dissolved and particulate Hg, dissolved organic carbon (DOC), and salinity between the two bays. Across lagoons, concentrations of chlorophyll-a were correlated with total suspended solids (TSS), and water column THg and MeHg was largely associated with the particulate fraction. Methylmercury concentrations in particulates decreased with increasing TSS and chlorophyll-a, evidence of biomass dilution of MeHg with increasing productivity at the base of the food chain. Water column Hg was associated with THg concentrations in Atlantic silversides, while mummichog THg concentrations were related to sediment concentrations, reflecting their different feeding strategies. Finally, higher nutrient loading (lower C:N in sediments) while related to lower particulate concentrations coincided with higher bioaccumulation factors (BAF) for Hg in both fish species. Thus, in shallow coastal lagoons, increased nutrient loading resulted in decreased Hg concentrations at the base of the food web but resulted in greater bioaccumulation of Hg to fish relative to its availability in algal food.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Estuários , Peixes , Cadeia Alimentar , Humanos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Nutrientes , Poluentes Químicos da Água/análise
4.
Sensors (Basel) ; 20(16)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781757

RESUMO

This paper presents a procedure to analyse the effects of radiation in an IEEE 802.15.4 RF receiver for wireless sensor networks (WSNs). Specifically, single-event transients (SETs) represent one of the greatest threats to the adequate performance of electronic communication devices in high-radiation environments. The proposed procedure consists in injecting current pulses in sensitive nodes of the receiver and analysing how they propagate through the different circuits that form the receiver. In order to perform this analysis, a Complementary Metal Oxide Semiconductor (CMOS) low-IF receiver has been designed using a 0.18 µm technology from the foundry UMC. In order to analyse the effect of single-event transients in this receiver, it has been studied how current pulses generated in the low-noise amplifier propagate down the receiver chain. The effect of the different circuits that form the receiver on this kind of pulse has been studied prior to the analysis of the complete receiver. First, the effect of SETs in low-noise amplifiers was analysed. Then, the propagation of pulses through mixers was studied. The effect of filters in the analysed current pulses has also been studied. Regarding the analysis of the designed RF receiver, an amplitude and phase shift was observed under the presence of SETs.

5.
Ecotoxicology ; 29(10): 1627-1643, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32557267

RESUMO

Acid deposition has declined across eastern North America and northern Europe due to reduced emissions of sulfur and nitrogen oxides. Ecosystem recovery has been slow with limited improvement in surface water chemistry. Delayed recovery has encouraged acid-neutralization strategies to accelerate recovery of impaired biological communities. Lime application has been shown to increase pH and dissolved organic carbon (DOC), which could also drive increased mobilization of mercury (Hg) to surface waters. A four-year study was conducted within Honnedaga Lake's watershed in the Adirondack region of New York to compare the effects of watershed and direct channel lime additions on Hg in stream water and macroinvertebrates. All treatments sharply increased stream pH and DOC concentrations, but large differences in the duration of impacts were apparent. The watershed treatment resulted in multi-year increases in concentrations and loads of total Hg (150%; 390%), DOC (190%; 350%) and nutrients, whereas total Hg and DOC increased for short periods (72-96 h) after channel treatments. No response of Hg in macroinvertebrates was evident following the watershed treatment, but a potential short-term and spatially constrained increase occurred after the channel treatment. Our observations indicate that both treatment approaches mobilize Hg, but that direct channel liming mobilizes considerably less than watershed liming over any period longer than a few days. During the final study year, increased methyl Hg concentrations were observed across reference and treated streams, which may reflect an extended dry period, highlighting that climate variation may also affect Hg dynamics.


Assuntos
Monitoramento Ambiental , Invertebrados/fisiologia , Rios/química , Poluentes Químicos da Água/análise , Animais , Biota , Carbono , Ecossistema , Europa (Continente) , Mercúrio/análise , Compostos de Metilmercúrio , New York
6.
Sensors (Basel) ; 20(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32284500

RESUMO

In order to obtain a better perspective of the impacts of brownfields on the land-atmosphere exchange of mercury in urban areas, total gaseous mercury (TGM) was measured at two heights (1.8 m and 42.7 m) prior to 2011-2012 and after 2015-2016 for the remediation of a brownfield and installation of a parking lot adjacent to the Syracuse Center of Excellence in Syracuse, NY, USA. Prior to brownfield remediation, the annual average TGM concentrations were 1.6 ± 0.6 and 1.4 ± 0.4 ng · m - 3 at the ground and upper heights, respectively. After brownfield remediation, the annual average TGM concentrations decreased by 32% and 22% at the ground and the upper height, respectively. Mercury soil flux measurements during summer after remediation showed net TGM deposition of 1.7 ng · m - 2 · day - 1 suggesting that the site transitioned from a mercury source to a net mercury sink. Measurements from the Atmospheric Mercury Network (AMNet) indicate that there was no regional decrease in TGM concentrations during the study period. This study demonstrates that evasion from mercury-contaminated soil significantly increased local TGM concentrations, which was subsequently mitigated after soil restoration. Considering the large number of brownfields, they may be an important source of mercury emissions source to local urban ecosystems and warrant future study at additional locations.

7.
Ecotoxicology ; 29(10): 1614-1626, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31925621

RESUMO

Mercury (Hg) concentrations and speciation were measured in nine tributaries to Lake Ontario as part of two independent field-sampling programs. Among the study tributaries, mean total Hg (THg) concentrations ranged from 0.9 to 2.6 ng/L; mean dissolved Hg (THgD) ranged from 0.5 to 1.5 ng/L; mean particulate Hg (THgP) ranged from 0.3 to 2.0 ng/L; and mean methylmercury (MeHg) ranged from 0.06 to 0.14 ng/L. Watershed land cover, total suspended solids (TSS), and dissolved organic carbon (DOC) were evaluated as potential controls of tributary Hg. Significant relationships between THgD and DOC were limited, whereas significant relationships between THgP and TSS were common across watersheds. Total suspended solids was strongly correlated with the percentage of agricultural land in watersheds. Particle enrichment of Hg (mass Hg/mass TSS) was highly variable, but distinctly higher in US tributaries likely due to higher TSS in Canadian tributaries associated with higher urban and agricultural land cover. MeHg was largely associated with the aqueous phase, and MeHg as a fraction of THg was positively correlated to percent open water coverage in the watershed. Wetland cover was positively correlated to THg and MeHg concentrations, while urban land cover was only related to higher THgP.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Agricultura , Lagos/química , Compostos de Metilmercúrio , Ontário , Rios , Estações do Ano , Áreas Alagadas
8.
Ecotoxicology ; 29(10): 1709-1720, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31955284

RESUMO

In the mid-2000s a survey was conducted to evaluate fish mercury in lakes across New York State. Approximately 10 years later a second survey examining adult sportfish from 103 lakes and reservoirs was conducted to evaluate the response of fish mercury to recent declines in US mercury emissions. Of those lakes, 43 were part of the earlier survey and were examined to determine if mercury concentrations in four popular sport species, Yellow Perch, Walleye, and Small- and Largemouth Bass, declined in response to decreasing emissions. Water samples were also collected at 35 of these lakes and analyzed for mercury, methylmercury and other analytes. The Adirondack and Catskill regions remain biological mercury hotspots with elevated concentrations in fish. The most widely sampled species, Yellow Perch, showed significant increases in mercury in the Northeast and West regions of New York State over the past decade. The increases in Yellow Perch mercury is not consistent with significant reductions in water concentrations of both total and methylmercury observed corresponding in lake water samples. This discrepancy suggests watershed and in-lake processes beyond mercury emissions, such as recovery from acid deposition, impacts from climate change, or changes in food web structure may be controlling fish mercury concentrations. These results demonstrate a need for a consistent, long-term program to monitor fish mercury to inform the status of mercury contamination in New York State.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Peixes , Cadeia Alimentar , Lagos , Compostos de Metilmercúrio , New York , Percas
9.
Ecotoxicology ; 29(10): 1602-1613, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31974921

RESUMO

Nearly half of freshwater wetlands have been lost due to human disturbance. In response, wetlands are being restored to retain their ecosystem services. A potentially adverse consequence of wetland function is the production of methylmercury (MeHg). We measured concentrations of mercury (Hg) species and ancillary parameters in groundwaters and surface waters from four natural and 16 restored wetlands in northern New York State, USA to investigate differences in concentrations of Hg species among wetlands. We found no obvious differences in concentrations of total mercury (THg) and methylmercury in pond waters between natural and restored wetlands. High values of %methylmercury were evident in both ground (38.8 ± 27.6%) and surface waters (43.4 ± 25.6%) suggesting these wetland complexes are highly efficient in converting ionic Hg to methylmercury, regardless if restored or natural. High methylation efficiency may be due to observed drying and rewetting cycles. Hg in pond waters is likely derived from direct atmospheric deposition or by mobilization from near-wetland shallow sediments, in addition to groundwater inflows. Water flow of groundwaters from the associated watershed into pond waters resulted in increases in concentrations of THg and methylmercury. Dissolved organic matter likely plays an important role in the supply of Hg to pond waters. Relationships between methylmercury and %methylmercury with sulfate and nitrate in groundwaters may suggest some chemical limitation on Hg methylation at higher concentrations of these anions. Because of the similarity in Hg dynamics for natural and restored wetlands, the most effective strategy to mitigate methylmercury production would be to decrease atmospheric Hg deposition.


Assuntos
Ecossistema , Monitoramento Ambiental , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Água Doce , Água Subterrânea , New York , Lagoas
10.
PLoS One ; 13(4): e0196293, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29684081

RESUMO

Mercury (Hg) is deposited from the atmosphere to remote areas such as forests, but the amount of Hg in trees is not well known. To determine the importance of Hg in trees, we analyzed foliage, bark and bole wood of eight tree species at four sites in the northeastern USA (Huntington Forest, NY; Sleepers River, VT; Hubbard Brook, NH; Bear Brook, ME). Foliar concentrations of Hg averaged 16.3 ng g-1 among the hardwood species, which was significantly lower than values in conifers, which averaged 28.6 ng g-1 (p < 0.001). Similarly, bark concentrations of Hg were lower (p < 0.001) in hardwoods (7.7 ng g-1) than conifers (22.5 ng g-1). For wood, concentrations of Hg were higher in yellow birch (2.1-2.8 ng g-1) and white pine (2.3 ng g-1) than in the other species, which averaged 1.4 ng g-1 (p < 0.0001). Sites differed significantly in Hg concentrations of foliage and bark (p = 0.02), which are directly exposed to the atmosphere, but the concentration of Hg in wood depended more on species (p < 0.001) than site (p = 0.60). The Hg contents of tree tissues in hardwood stands, estimated from modeled biomass and measured concentrations at each site, were higher in bark (mean of 0.10 g ha-1) and wood (0.16 g ha-1) than in foliage (0.06 g ha-1). In conifer stands, because foliar concentrations were higher, the foliar pool tended to be more important. Quantifying Hg in tree tissues is essential to understanding the pools and fluxes of Hg in forest ecosystems.


Assuntos
Florestas , Mercúrio/análise , Casca de Planta/química , Folhas de Planta/química , Traqueófitas/química , Árvores/química , Madeira/química , Ecossistema , Monitoramento Ambiental , New England , Poluentes do Solo/análise
11.
Sci Total Environ ; 625: 928-939, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306833

RESUMO

In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus.

12.
Environ Sci Process Impacts ; 20(4): 607-620, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29376155

RESUMO

Surface waters in Europe and North America previously impacted by acid deposition are recovering in conjunction with declining precursor emissions since the 1980s. Lime has been applied to some impacted watersheds to accelerate recovery. The response to liming can be considered a proxy for future recovery from acid deposition. Increases in dissolved organic carbon concentrations have been observed in surface waters in response to increased pH associated with recovery from acid deposition. Although not previously described, recovery-related increases in dissolved organic carbon could drive increases in mercury concentrations and loads because of the affinity of mercury for dissolved organic matter. We used a before-after impact-response approach to describe the response of stream mercury cycling to the application of lime to the watershed of a small stream in the Adirondack Mountains of New York, USA. Dissolved organic carbon, total mercury and methylmercury concentrations increased significantly in streamwater within two weeks of treatment, to previously unobserved concentrations. After six months, post-treatment before-after impact-control (BACI) tests indicate that mean dissolved organic carbon concentrations and total mercury to dissolved organic carbon ratios remained significantly higher and limed site fluxes of methylmercury were lower than those at the reference stream. This pattern suggests total mercury is leaching at elevated levels from the limed watershed, but limitations in production and transport to the stream channel likely resulted in increases in methylmercury concentration that were of limited duration.


Assuntos
Compostos de Cálcio/química , Florestas , Água Doce/química , Mercúrio/análise , Compostos de Metilmercúrio/análise , Óxidos/química , Poluentes Químicos da Água/análise , New York
13.
Environ Pollut ; 218: 664-672, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27521294

RESUMO

Syracuse, New York is working under a court-ordered agreement to limit combined sewer overflows (CSO) to local surface waters. Green infrastructure technologies, including green roofs, are being implemented as part of a CSO abatement strategy and to develop co-benefits of diminished stormwater runoff, including decreased loading of contaminants to the wastewater system and surface waters. The objective of this study was to examine the quantity and quality of discharge associated with precipitation events over an annual cycle from a green roof in Syracuse, NY and to compare measurements from this monitoring program with results from a roof irrigation experiment. Wet deposition, roof drainage, and water quality were measured for 87 storm events during an approximately 12 month period over 2011-2012. Water and nutrient (total phosphorus, total nitrogen, and dissolved organic carbon) mass balances were conducted on an event basis to evaluate retention annually and during the growing and non-growing seasons. These results are compared with a hydrological manipulation experiment, which comprised of artificially watering of the roof. Loadings of nutrients were calculated for experimental and actual storms using the concentration of nutrients and the flow data of water discharging the roof. The green roof was effective in retaining precipitation quantity from storm events (mean percent retention 96.8%, SD = 2.7%, n = 87), although the relative fraction of water retained decreased with increases in the size of the event. There was no difference in water retention of the green roof for the growing and non-growing seasons. Drainage waters exhibited high concentration of nutrients during the warm temperature growing season, particularly total nitrogen and dissolved organic carbon. Overall, nutrient losses were low because of the strong retention of water. However, there was marked variation in the retention of nutrients by season due to variations in concentrations in roof runoff.


Assuntos
Chuva , Movimentos da Água , Água/química , Conservação dos Recursos Naturais/métodos , Arquitetura de Instituições de Saúde/métodos , New York , Nitrogênio , Fósforo , Temperatura , Qualidade da Água
14.
Ecol Appl ; 24(4): 812-22, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988778

RESUMO

Terrestrial soil is a large reservoir of atmospherically deposited mercury (Hg). However, few studies have evaluated the accumulation of Hg in terrestrial ecosystems in the northeastern United States, a region which is sensitive to atmospheric Hg deposition. We characterized Hg and organic matter in soil profiles from 139 sampling sites for five subregions across the northeastern United States and estimated atmospheric Hg deposition to these sites by combining numerical modeling with experimental data from the literature. We did not observe any significant relationships between current net atmospheric Hg deposition and soil Hg concentrations or pools, even though soils are a net sink for Hg inputs. Soil Hg appears to be preserved relative to organic carbon (OC) and/or nitrogen (N) in the soil matrix, as a significant negative relationship was observed between the ratios of Hg/OC and OC/N (r = 0.54, P < 0.0001) that shapes the horizonal distribution patterns. We estimated that atmospheric Hg deposition since 1850 (3.97 mg/m2) accounts for 102% of the Hg pool in the organic horizons (3.88 mg/m2) and 19% of the total soil Hg pool (21.32 mg/m2), except for the southern New England (SNE) subregion. The mean residence time for soil Hg was estimated to be 1800 years, except SNE which was 800 years. These patterns suggest that in addition to atmospheric deposition, the accumulation of soil Hg is linked to the mineral diagenetic and soil development processes in the region.


Assuntos
Poluentes Atmosféricos/química , Mercúrio/química , Poluentes do Solo/química , Solo/química , Atmosfera , Carbono/química , Monitoramento Ambiental , New England
15.
Environ Toxicol Chem ; 32(3): 638-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23280672

RESUMO

Zebra mussels have invaded many lakes in the United States and could be a useful tool for monitoring responses of aquatic biota to changes in mercury loading. The goal of the present study was to evaluate zebra mussels for use as a biomonitor of mercury contamination by comparing zebra mussel mercury concentrations between a lake with only indirect atmospheric mercury contamination (Otisco Lake, NY, USA) and a lake that was directly contaminated by mercury discharges (Onondaga Lake, NY, USA). Zebra mussels were sampled in both the spring and fall of 2004 and 2005. Total mercury (THg) concentrations in zebra mussels were approximately seven times greater in Onondaga Lake than in Otisco Lake, and water column mercury concentrations differed by an order of magnitude between the two lakes. Seasonal differences resulted in significantly higher zebra mussel THg concentrations during the fall for both lakes. There was also significant variation among different sampling sites in Onondaga Lake. Mussel methylmercury concentrations averaged 53% of THg concentrations but were highly variable. Strong relationships between water column THg and zebra mussel THg suggest that zebra mussels are a good indicator of aquatic mercury concentrations and could be used as an effective biomonitor of mercury contamination in aquatic ecosystems.


Assuntos
Dreissena/metabolismo , Monitoramento Ambiental/métodos , Mercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Bivalves , Ecossistema , Lagos/química , Mercúrio/análise , Estações do Ano , Estados Unidos , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos
16.
Ecotoxicology ; 20(7): 1543-54, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21691858

RESUMO

We studied the spatial distribution patterns of mercury (Hg) in lake water, littoral sediments, zooplankton, crayfish, fish, and common loons in 44 lakes of the Adirondacks of New York State, USA, a region that has been characterized as a "biological Hg hotspot". Our study confirmed this pattern, finding that a substantial fraction of the lakes studied had fish and loon samples exceeding established criteria for human and wildlife health. Factors accounting for the spatial variability of Hg in lake water and biota were lake chemistry (pH, acid neutralizing capacity (ANC), percent carbon in sediments), biology (taxa presence, trophic status) and landscape characteristics (land cover class, lake elevation). Hg concentrations in zooplankton, fish and common loons were negatively associated with the lake water acid-base status (pH, ANC). Bioaccumulation factors (BAF) for methyl Hg (MeHg) increased from crayfish (mean log(10) BAF = 5.7), to zooplankton (5.9), to prey fish (6.2), to larger fish (6.3), to common loons (7.2). MeHg BAF values in zooplankton, crayfish, and fish (yellow perch equivalent) all increased with increasing lake elevation. Our findings support the hypothesis that bioaccumulation of MeHg at the base of the food chain is an important controller of Hg concentrations in taxa at higher trophic levels. The characteristics of Adirondack lake-watersheds (sensitivity to acidic deposition; significant forest and wetland land cover; and low nutrient inputs) contribute to elevated Hg concentrations in aquatic biota.


Assuntos
Biota , Lagos/química , Mercúrio/análise , Mercúrio/farmacocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética , Animais , Astacoidea , Aves , Monitoramento Ambiental/métodos , Peixes , Cadeia Alimentar , Sedimentos Geológicos/análise , Modelos Lineares , Mercúrio/química , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/farmacocinética , New York , Poluentes Químicos da Água/química , Áreas Alagadas , Zooplâncton
17.
FEMS Microbiol Ecol ; 74(3): 655-68, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20955196

RESUMO

Processes leading to the bioaccumulation of methylmercury (MeHg) in northern wetlands are largely unknown. We have studied various ecological niches within a remote, acidic forested lake ecosystem in the southwestern Adirondacks, NY, to discover that mats comprised of Sphagnum moss were a hot spot for mercury (Hg) and MeHg accumulation (190.5 and 18.6 ng g⁻¹ dw, respectively). Furthermore, significantly higher potential methylation rates were measured in Sphagnum mats as compared with other sites within Sunday Lake's ecosystem. Although MPN estimates showed a low biomass of sulfate-reducing bacteria (SRB), 2.8 × 104 cells mL⁻¹ in mat samples, evidence consisting of (1) a twofold stimulation of potential methylation by the addition of sulfate, (2) a significant decrease in Hg methylation in the presence of the sulfate reduction inhibitor molybdate, and (3) presence of dsrAB-like genes in mat DNA extracts, suggested that SRB were involved in Hg methylation. Sequencing of dsrB genes indicated that novel SRB, incomplete oxidizers including Desulfobulbus spp. and Desulfovibrio spp., and syntrophs dominated the sulfate-reducing guild in the Sphagnum moss mat. Sphagnum, a bryophyte dominating boreal peatlands, and its associated microbial communities appear to play an important role in the production and accumulation of MeHg in high-latitude ecosystems.


Assuntos
Compostos de Metilmercúrio/metabolismo , Sphagnopsida/microbiologia , Bactérias Redutoras de Enxofre/metabolismo , Áreas Alagadas , Ácidos , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Água Doce/química , Água Doce/microbiologia , Metilação , New York , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo , Bactérias Redutoras de Enxofre/classificação , Bactérias Redutoras de Enxofre/genética , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Árvores
18.
Environ Pollut ; 154(1): 46-55, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18215448

RESUMO

The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27ng/L) than values during the non-growing season (0.10ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092microg/m2-year respectively.


Assuntos
Monitoramento Ambiental/métodos , Mercúrio/análise , Árvores , Poluentes Químicos da Água/análise , Áreas Alagadas , Carbono/análise , Compostos de Metilmercúrio/análise , Estações do Ano , Solo , Solubilidade , Sulfatos/análise , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...