Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37133345

RESUMO

Implosion symmetry is a key requirement in achieving a robust burning plasma in inertial confinement fusion experiments. In double-shell capsule implosions, we are interested in the shape of the inner shell as it pushes on the fuel. Shape analysis is a popular technique for studying said symmetry during implosion. Combinations of filtering and contour-finding algorithms are studied for their promise in reliably recovering Legendre shape coefficients from synthetic radiographs of double-shell capsules with applied levels of noise. A radial lineout max(slope) method when used on an image pre-filtered with non-local means and a variant of the marching squares algorithm are able to recover p0, p2, and p4 maxslope Legendre shape coefficients with mean pixel discrepancy errors of 2.81 and 3.06, respectively, for the noisy synthetic radiographs we consider. This improves upon prior radial lineout methods paired with Gaussian filtering, which we show to be unreliable and whose performance is dependent on input parameters that are difficult to estimate.

2.
Rev Sci Instrum ; 94(2): 021103, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859012

RESUMO

X-ray phase contrast imaging (XPCI) provides enhanced image contrast beyond absorption-based x-ray imaging alone due to refraction and diffraction from gradients in the object material density. It is sensitive to small variations in density, such as internal voids, cracks, grains, defects, and material flow, as well as to stronger density variations such as from a shock wave. Beyond its initial use in biology and materials science, XPCI is now routinely used in inertial confinement fusion (ICF) and high energy density (HED) research, first to characterize ICF capsules and targets, and later applied in dynamic experiments, where coherent x-ray sources, ultrafast x-ray pulses, and high temporal and spatial resolution are required. In this Review article, XPCI image formation theory is presented, its diverse use in ICF and HED research is discussed, the unique requirements for ultrafast XPCI imaging are given, as well as current challenges and issues in its use.

3.
Rev Sci Instrum ; 93(10): 103502, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319339

RESUMO

Mesoscale imperfections, such as pores and voids, can strongly modify the properties and the mechanical response of materials under extreme conditions. Tracking the material response and microstructure evolution during void collapse is crucial for understanding its performance. In particular, imperfections in the ablator materials, such as voids, can limit the efficiency of the fusion reaction and ultimately hinder ignition. To characterize how voids influence the response of materials during dynamic loading and seed hydrodynamic instabilities, we have developed a tailored fabrication procedure for designer targets with voids at specific locations. Our procedure uses SU-8 as a proxy for the ablator materials and hollow silica microspheres as a proxy for voids and pores. By using photolithography to design the targets' geometry, we demonstrate precise and highly reproducible placement of a single void within the sample, which is key for a detailed understanding of its behavior under shock compression. This fabrication technique will benefit high-repetition rate experiments at x-ray and laser facilities. Insight from shock compression experiments will provide benchmarks for the next generation of microphysics modeling.

4.
Opt Express ; 30(21): 38405-38422, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258406

RESUMO

Inertial confinement fusion (ICF) holds increasing promise as a potential source of abundant, clean energy, but has been impeded by defects such as micro-voids in the ablator layer of the fuel capsules. It is critical to understand how these micro-voids interact with the laser-driven shock waves that compress the fuel pellet. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we utilized an x-ray pulse train with ns separation, an x-ray microscope, and an ultrafast x-ray imaging (UXI) detector to image shock wave interactions with micro-voids. To minimize the high- and low-frequency variations of the captured images, we incorporated principal component analysis (PCA) and image alignment for flat-field correction. After applying these techniques we generated phase and attenuation maps from a 2D hydrodynamic radiation code (xRAGE), which were used to simulate XPCI images that we qualitatively compare with experimental images, providing a one-to-one comparison for benchmarking material performance. Moreover, we implement a transport-of-intensity (TIE) based method to obtain the average projected mass density (areal density) of our experimental images, yielding insight into how defect-bearing ablator materials alter microstructural feature evolution, material compression, and shock wave propagation on ICF-relevant time scales.

5.
Rev Sci Instrum ; 92(3): 033547, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820106

RESUMO

In inertial confinement fusion (ICF), x-ray radiography is a critical diagnostic for measuring implosion dynamics, which contain rich three-dimensional (3D) information. Traditional methods for reconstructing 3D volumes from 2D radiographs, such as filtered backprojection, require radiographs from at least two different angles or lines of sight (LOS). In ICF experiments, the space for diagnostics is limited, and cameras that can operate on fast timescales are expensive to implement, limiting the number of projections that can be acquired. To improve the imaging quality as a result of this limitation, convolutional neural networks (CNNs) have recently been shown to be capable of producing 3D models from visible light images or medical x-ray images rendered by volumetric computed tomography. We propose a CNN to reconstruct 3D ICF spherical shells from single radiographs. We also examine the sensitivity of the 3D reconstruction to different illumination models using preprocessing techniques such as pseudo-flatfielding. To resolve the issue of the lack of 3D supervision, we show that training the CNN utilizing synthetic radiographs produced by known simulation methods allows for reconstruction of experimental data as long as the experimental data are similar to the synthetic data. We also show that the CNN allows for 3D reconstruction of shells that possess low mode asymmetries. Further comparisons of the 3D reconstructions with direct multiple LOS measurements are justified.

6.
ACS Appl Mater Interfaces ; 7(13): 7054-9, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25798653

RESUMO

In this study, we report the fabrication of n-type flexible thermoelectric fabrics using layered Bi2Se3 nanoplate/polyvinylidene fluoride (PVDF) composites as the thermoelectric material. These composites exhibit room temperature Seebeck coefficient and electrical conductivity values of -80 µV K(-1) and 5100 S m(-1), respectively, resulting in a power factor approaching 30 µW m(-1)K(-2). The temperature-dependent thermoelectric properties reveal that the composites exhibit metallic-like electrical conductivity, whereas the thermoelectric power is characterized by a heterogeneous model. These composites have the potential to be used in atypical applications for thermoelectrics, where lightweight and flexible materials would be beneficial. Indeed, bending tests revealed excellent durability of the thermoelectric fabrics. We anticipate that this work may guide the way for fabricating high performance thermoelectric fabrics based on layered V-VI nanoplates.

7.
Phys Chem Chem Phys ; 17(14): 8591-5, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25620157

RESUMO

Highly-flexible thermoelectric fabrics were fabricated based on a layered structure, composed of a thin active layer of self-assembled tellurium nanorods and a substrate layer of polyvinylidene fluoride. The resulting thermoelectric fabrics show a high room temperature power factor of 45.8 µW m(-1) K(-2), which opens a new avenue to fabricate highly-flexible sustainable energy sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...