Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38204120

RESUMO

Esters are versatile compounds with a wide range of applications in various industries due to their unique properties and pleasant aromas. Conventionally, the manufacture of these compounds has relied on the chemical route. Nevertheless, this technique employs high temperatures and inorganic catalysts, resulting in undesired additional steps to purify the final product by removing solvent residues, which decreases environmental sustainability and energy efficiency. In accordance with the principles of "Green Chemistry" and the search for more environmentally friendly methods, a new alternative, the enzymatic route, has been introduced. This technique uses low temperatures and does not require the use of solvents, resulting in more environmentally friendly final products. Despite the large number of studies published on the biocatalytic synthesis of esters, little attention has been paid to the reactors used for it. Therefore, it is convenient to gather the scattered information regarding the type of reactor employed in these synthesis reactions, considering the industrial field in which the process is carried out. A comparison between the performance of the different reactor configurations will allow us to draw the appropriate conclusions regarding their suitability for each specific industrial application. This review addresses, for the first time, the above aspects, which will undoubtedly help with the correct industrial implementation of these processes.

2.
Micromachines (Basel) ; 15(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38258260

RESUMO

Plastics, primarily microplastics, are among the greatest pollutants in aquatic environments. Their removal and/or degradation in these environments are crucial to ensure an optimal future of these ecosystems. In this work, MnO2 particles were synthesized and characterized for the removal of polystyrene microplastics as a model. MnO2 catalyzes the peroxide reaction, resulting in the formation of oxygen bubbles that propel the pollutants to the surface, achieving removal efficiencies of up to 80%. To achieve this, hydrothermal synthesis was employed using various methods. Parameters such as MnO2, pH, microplastics, and H2O2 concentrations were varied to determine the optimal conditions for microplastics recovering. The ideal conditions for a low microplastic concentrations (10 mg L-1) are 0.2 g L-1 MnO2, 1.6% of H2O2 and 0.01 triton as a surfactant. In these conditions, the micromotors can recover approximately 80% of 300 nm sized polystyrene microplastic within 40 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...