Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252382

RESUMO

Until recently, the roles of plant MADS-box genes have mainly been characterized during inflorescence and flower differentiation. In order to precise the roles of AGAMOUS-LIKE 12, one of the few MADS-box genes preferentially expressed in roots, we placed its cDNA under the control of the double 35S CaMV promoter to produce transgenic walnut tree and Arabidopsis plants. In Juglans sp., transgenic somatic embryos showed significantly higher germination rates but abnormal development of their shoot apex prevented their conversion into plants. In addition, a wide range of developmental abnormalities corresponding to ectopic root-like structures affected the transgenic lines suggesting partial reorientations of the embryonic program toward root differentiation. In Arabidopsis, AtAGL12 overexpression lead to the production of faster growing plants presenting dramatically wider and shorter root phenotypes linked to increased meristematic cell numbers within the root apex. In the upper part of the roots, abnormal cell divisions patterns within the pericycle layer generated large ectopic cell masses that did not prevent plants to grow. Taken together, our results confirm in both species that AGL12 positively regulates root meristem cell division and promotes overall root vascular tissue formation. Genetic engineering of AGL12 expression levels could be useful to modulate root architecture and development.

2.
Front Plant Sci ; 10: 1056, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555315

RESUMO

Parasitic plants in the Orobanchaceae family include devastating weed species, such as Striga, Orobanche, and Phelipanche, which infest important crops and cause economic losses of over a billion US dollars worldwide, yet the molecular and cellular processes responsible for such parasitic relationships remain largely unknown. Parasitic species of the Orobanchaceae family form specialized invasion organs called haustoria on their roots to enable the invasion of host root tissues. The process of forming haustoria can be divided into two steps, prehaustorium formation and haustorium maturation, the processes occurring before and after host attachment, respectively. Prehaustorium formation is provoked by host-derived signal molecules, collectively called haustorium-inducing factors (HIFs). Cell wall-related quinones and phenolics have been known for a long time to induce haustoria in many Orobanchaceae species. Although such phenolics are widely produced in plants, structural specificities exist among these molecules that modulate their competency to induce haustoria in different parasitic plant species. In addition, the plant hormone cytokinins, structurally distinct from phenolic compounds, also trigger prehaustorium formation in Orobanchaceae. Recent findings demonstrate their involvement as rhizopsheric HIFs for Orobanche and Phelipanche species and thus address new activities for cytokinins in haustorium formation in Orobanchaceae, as well as in rhizospheric signaling. This review highlights haustorium-inducing signals in the Orobanchaceae family in the context of their host origin, action mechanisms, and species specificity.

3.
Plant Cell Environ ; 42(9): 2612-2626, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31134630

RESUMO

Karrikins stimulate Arabidopsis thaliana germination, whereas parasitic weeds of the Orobanchaceae family have evolved to respond to host-exuded compounds such as strigolactones, dehydrocostus lactone, and 2-phenylethyl isothiocyanate. In Phelipanche ramosa, strigolactone-induced germination was shown to require one of the CYP707A proteins involved in abscisic acid catabolism. Here, germination and gene expression were analysed to investigate the role of CYP707As in germination of both parasitic plants and Arabidopsis upon perception of germination stimulants, after using pharmacological inhibitors and Arabidopsis mutants disrupting germination signals. CYP707A genes were up-regulated upon treatment with effective germination stimulants in both parasitic plants and Arabidopsis. Obligate parasitic plants exhibited both intensified up-regulation of CYP707A genes and increased sensitivity to the CYP707A inhibitor abscinazole-E2B, whereas Arabidopsis cyp707a mutants still positively responded to germination stimulation. In Arabidopsis, CYP707A regulation required the canonical karrikin signalling pathway KAI2/MAX2/SMAX1 and the transcription factor WRKY33. Finally, CYP707As and WRKY33 also modulated Arabidopsis root architecture in response to the synthetic strigolactone rac-GR24, and wrky33-1 exhibited a shoot hyperbranched phenotype. This study suggests that the lack of host-independent germination in obligate parasites is associated with an exacerbated CYP707A induction and that CYP707As and WRKY33 are new players involved in a variety of strigolactone/karrikin responses.


Assuntos
Arabidopsis/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Germinação , Orobanchaceae/enzimologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Furanos/metabolismo , Hidrolases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Piranos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
4.
J Exp Bot ; 68(20): 5539-5552, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29069455

RESUMO

The heterotrophic lifestyle of parasitic plants relies on the development of the haustorium, a specific infectious organ required for attachment to host roots. While haustorium development is initiated upon chemodetection of host-derived molecules in hemiparasitic plants, the induction of haustorium formation remains largely unknown in holoparasitic species such as Phelipanche ramosa. This work demonstrates that the root exudates of the host plant Brassica napus contain allelochemicals displaying haustorium-inducing activity on P. ramosa germinating seeds, which increases the parasite aggressiveness. A de novo assembled transcriptome and microarray approach with P. ramosa during early haustorium formation upon treatment with B. napus root exudates allowed the identification of differentially expressed genes involved in hormone signaling. Bioassays using exogenous cytokinins and the specific cytokinin receptor inhibitor PI-55 showed that cytokinins induced haustorium formation and increased parasite aggressiveness. Root exudates triggered the expression of cytokinin-responsive genes during early haustorium development in germinated seeds, and bio-guided UPLC-ESI(+)-/MS/MS analysis showed that these exudates contain a cytokinin with dihydrozeatin characteristics. These results suggest that cytokinins constitutively exudated from host roots play a major role in haustorium formation and aggressiveness in P. ramosa.


Assuntos
Brassica napus/parasitologia , Citocininas/metabolismo , Orobanche/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Orobanche/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia
5.
Front Plant Sci ; 7: 2048, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119724

RESUMO

The plant-parasitic plant interaction is a interesting model to study sink-source relationship and phloem unloading. The parasitic plants, such as the achlorophyllous plant Phelipanche ramosa, connect to the host phloem through the haustorium and act as supernumerary sinks for the host-derived photoassimilates, primarily sucrose. The application of the fluorescent symplastic tracer, carboxyfluorescein (CF) derived from carboxyfluorescein diacetate (CFDA), to the leaves of the host plant (Brassica napus) showed direct phloem connections at the host-parasite interface. These experiments also evidenced the dominant apoplastic pathway for phloem unloading in major vegetative sinks of the parasite, including tubercles and shoots, except the adventitious root apices. The CF experiments showed also the symplastic isolation of the phloem tissues from the sink tissues in tubercle and shoot of the parasite, then suggesting the pivotal role of sucrose transporters in sucrose unloading in P. ramosa sinks. Three cDNAs encoding sucrose transporters (PrSUT) were isolated from the parasitic plant. PrSUT1 transcripts accumulated at the same level in the tubercle throughout the parasite growth while a significant increase in transcript accumulation occurred after emergence in the flowering shoot, notably in the growing apical part. The in situ hybridization experiments revealed the PrSUT1 transcript accumulation in the mature phloem cells of both subterranean and flowering shoots, as well as in shoot terminal sinks corresponding to apical meristem, scale leaf primordia and immature vasculature. The transient expression experiments in Arabidopsis protoplasts showed that PrSUT1 was localized at the plasma membrane, suggesting its role in phloem functioning and sucrose uptake by the sink cells in P. ramosa. Conversely, the PrSUT2 transcript accumulation was constantly low in tubercles and shoots but PrSUT3 transcripts accumulated markedly in the subterranean and flowering shoots, in concordance with the PrSUT3 mRNA accumulation in multiple sink areas including apical meristem, scale-leaf primordia, immature vasculature and even storage parenchyma. However, the PrSUT3 transcripts did not accumulate in the mature phloem cells. The transient expression experiments in Arabidopsis protoplasts suggested a tonoplast localization of PrSUT3, for which nevertheless the involvement in intracellular sucrose transport needs clarification.

6.
Plant Methods ; 11: 24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25866549

RESUMO

BACKGROUND: Image analysis is increasingly used in plant phenotyping. Among the various imaging techniques that can be used in plant phenotyping, chlorophyll fluorescence imaging allows imaging of the impact of biotic or abiotic stresses on leaves. Numerous chlorophyll fluorescence parameters may be measured or calculated, but only a few can produce a contrast in a given condition. Therefore, automated procedures that help screening chlorophyll fluorescence image datasets are needed, especially in the perspective of high-throughput plant phenotyping. RESULTS: We developed an automatic procedure aiming at facilitating the identification of chlorophyll fluorescence parameters impacted on leaves by a stress. First, for each chlorophyll fluorescence parameter, the procedure provides an overview of the data by automatically creating contact sheets of images and/or histograms. Such contact sheets enable a fast comparison of the impact on leaves of various treatments, or of the contrast dynamics during the experiments. Second, based on the global intensity of each chlorophyll fluorescence parameter, the procedure automatically produces radial plots and box plots allowing the user to identify chlorophyll fluorescence parameters that discriminate between treatments. Moreover, basic statistical analysis is automatically generated. Third, for each chlorophyll fluorescence parameter the procedure automatically performs a clustering analysis based on the histograms. This analysis clusters images of plants according to their health status. We applied this procedure to monitor the impact of the inoculation of the root parasitic plant Phelipanche ramosa on Arabidopsis thaliana ecotypes Col-0 and Ler. CONCLUSIONS: Using this automatic procedure, we identified eight chlorophyll fluorescence parameters discriminating between the two ecotypes of A. thaliana, and five impacted by the infection of Arabidopsis thaliana by P. ramosa. More generally, this procedure may help to identify chlorophyll fluorescence parameters impacted by various types of stresses. We implemented this procedure at http://www.phenoplant.org freely accessible to users of the plant phenotyping community.

7.
J Exp Bot ; 66(11): 3129-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25821070

RESUMO

Seed dormancy release of the obligate root parasitic plant, Phelipanche ramosa, requires a minimum 4-day conditioning period followed by stimulation by host-derived germination stimulants, such as strigolactones. Germination is then mediated by germination stimulant-dependent activation of PrCYP707A1, an abscisic acid catabolic gene. The molecular mechanisms occurring during the conditioning period that silence PrCYP707A1 expression and regulate germination stimulant response are almost unknown. Here, global DNA methylation quantification associated with pharmacological approaches and cytosine methylation analysis of the PrCYP707A1 promoter were used to investigate the modulation and possible role of DNA methylation during the conditioning period and in the PrCYP707A1 response to GR24, a synthetic strigolactone analogue. Active global DNA demethylation occurs during the conditioning period and is required for PrCYP707A1 activation by GR24 and for subsequent seed germination. Treatment with 5-azacytidine, a DNA-hypomethylating molecule, reduces the length of the conditioning period. Conversely, hydroxyurea, a hypermethylating agent, inhibits PrCYP707A1 expression and seed germination. Methylated DNA immunoprecipitation followed by PCR experiments and bisulfite sequencing revealed that DNA demethylation particularly impacts a 78-nucleotide sequence in the PrCYP707A1 promoter. The results here demonstrate that the DNA methylation status during the conditioning period plays a crucial role independently of abscisic acid in the regulation of P. ramosa seed germination by controlling the strigolactone-dependent expression of PrCYP707A1.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Lactonas/farmacologia , Orobanche/fisiologia , Sementes/fisiologia , Ácido Abscísico/metabolismo , Azacitidina/farmacologia , Sequência de Bases , Sistema Enzimático do Citocromo P-450/genética , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Germinação/efeitos dos fármacos , Hidroxiureia/farmacologia , Dados de Sequência Molecular , Orobanche/efeitos dos fármacos , Dormência de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/parasitologia , Sementes/efeitos dos fármacos , Análise de Sequência de DNA
8.
J Exp Bot ; 63(14): 5311-22, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22859674

RESUMO

After a conditioning period, seed dormancy in obligate root parasitic plants is released by a chemical stimulus secreted by the roots of host plants. Using Phelipanche ramosa as the model, experiments conducted in this study showed that seeds require a conditioning period of at least 4 d to be receptive to the synthetic germination stimulant GR24. A cDNA-AFLP procedure on seeds revealed 58 transcript-derived fragments (TDFs) whose expression pattern changed upon GR24 treatment. Among the isolated TDFs, two up-regulated sequences corresponded to an abscisic acid (ABA) catabolic gene, PrCYP707A1, encoding an ABA 8'-hydroxylase. Using the rapid amplification of cDNA ends method, two full-length cDNAs, PrCYP707A1 and PrCYP707A2, were isolated from seeds. Both genes were always expressed at low levels during conditioning during which an initial decline in ABA levels was recorded. GR24 application after conditioning triggered a strong up-regulation of PrCYP707A1 during the first 18 h, followed by an 8-fold decrease in ABA levels detectable 3 d after treatment. In situ hybridization experiments on GR24-treated seeds revealed a specific PrCYP707A1 mRNA accumulation in the cells located between the embryo and the micropyle. Abz-E2B, a specific inhibitor of CYP707A enzymes, significantly impeded seed germination, proving to be a non-competitive antagonist of GR24 with reversible inhibitory activity. These results demonstrate that P. ramosa seed dormancy release relies on ABA catabolism mediated by the GR24-dependent activation of PrCYP707A1. In addition, in situ hybridization corroborates the putative location of cells receptive to the germination stimulants in seeds.


Assuntos
Ácido Abscísico/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Lactonas/farmacologia , Orobanchaceae/genética , Proteínas de Plantas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Complementar , Perfilação da Expressão Gênica , Germinação , Dados de Sequência Molecular , Orobanchaceae/efeitos dos fármacos , Orobanchaceae/crescimento & desenvolvimento , Dormência de Plantas , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Sementes/metabolismo , Análise de Sequência de DNA , Triazóis/metabolismo
9.
Mol Plant Microbe Interact ; 25(7): 993-1004, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22414435

RESUMO

Phelipanche ramosa is a major parasitic weed of Brassica napus. The first step in a host-parasitic plant interaction is stimulation of parasite seed germination by compounds released from host roots. However, germination stimulants produced by B. napus have not been identified yet. In this study, we characterized the germination stimulants that accumulate in B. napus roots and are released into the rhizosphere. Eight glucosinolate-breakdown products were identified and quantified in B. napus roots by gas chromatography-mass spectrometry. Two (3-phenylpropanenitrile and 2-phenylethyl isothiocyanate [2-PEITC]) were identified in the B. napus rhizosphere. Among glucosinolate-breakdown products, P. ramosa germination was strongly and specifically triggered by isothiocyanates, indicating that 2-PEITC, in particular, plays a key role in the B. napus-P. ramosa interaction. Known strigolactones were not detected by ultraperformance liquid chromatography-tandem mass spectrometry, and seed of Phelipanche and Orobanche spp. that respond to strigolactones but not to isothiocyanates did not germinate in the rhizosphere of B. napus. Furthermore, both wild-type and strigolactone biosynthesis mutants of Arabidopsis thaliana Atccd7 and Atccd8 induced similar levels of P. ramosa seed germination, suggesting that compounds other than strigolactone function as germination stimulants for P. ramosa in other Brassicaceae spp. Our results open perspectives on the high adaptation potential of root-parasitic plants under host-driven selection pressures.


Assuntos
Brassica napus/parasitologia , Glucosinolatos/farmacologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Orobanchaceae/efeitos dos fármacos , Exsudatos de Plantas/farmacologia , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Brassica napus/química , Dioxigenases/genética , Cromatografia Gasosa-Espectrometria de Massas , Germinação/efeitos dos fármacos , Glucosinolatos/isolamento & purificação , Glucosinolatos/metabolismo , Isotiocianatos/farmacologia , Lactonas/farmacologia , Mutação , Orobanchaceae/fisiologia , Exsudatos de Plantas/isolamento & purificação , Exsudatos de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/parasitologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia , Rizosfera , Sementes/efeitos dos fármacos , Sementes/fisiologia , Relação Estrutura-Atividade
10.
Plant J ; 67(1): 61-71, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21401746

RESUMO

Jasmonates are plant signalling molecules that play key roles in defence against insects and certain pathogens, among others by controlling the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the AP2/ERF-domain transcription factor ORCA3 controls the jasmonate-responsive expression of several genes encoding enzymes involved in terpenoid indole alkaloid biosynthesis. ORCA3 gene expression is itself induced by jasmonate. The ORCA3 promoter contains an autonomous jasmonate-responsive element (JRE) composed of a quantitative sequence responsible for the high level of expression and a qualitative sequence that acts as an on/off switch in response to methyl-jasmonate (MeJA). Here, we identify the basic helix-loop-helix (bHLH) transcription factor CrMYC2 as the major activator of MeJA-responsive ORCA3 gene expression. The CrMYC2 gene is an immediate-early jasmonate-responsive gene. CrMYC2 binds to the qualitative sequence in the ORCA3 JRE in vitro, and transactivates reporter gene expression via this sequence in transient assays. Knock-down of the CrMYC2 expression level via RNA interference caused a strong reduction in the level of MeJA-responsive ORCA3 mRNA accumulation. In addition, MeJA-responsive expression of the related transcription factor gene ORCA2 was significantly reduced. Our results show that MeJA-responsive expression of alkaloid biosynthesis genes in C. roseus is controlled by a transcription factor cascade consisting of the bHLH protein CrMYC2 regulating ORCA gene expression, and the AP2/ERF-domain transcription factors ORCA2 and ORCA3, which in turn regulate a subset of alkaloid biosynthesis genes.


Assuntos
Acetatos/farmacologia , Alcaloides/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Catharanthus/genética , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Transativadores/genética , Fatores de Transcrição/genética , Alcaloides/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Catharanthus/metabolismo , Linhagem Celular , DNA Complementar , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Proteínas Recombinantes , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
11.
Plant Cell Physiol ; 52(3): 578-87, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21306988

RESUMO

Jasmonates are plant signaling molecules that play key roles in protection against certain pathogens and against insects by switching on the expression of genes encoding defense proteins including enzymes involved in the biosynthesis of toxic secondary metabolites. In Catharanthus roseus, the ethylene response factor (ERF) transcription factor ORCA3 controls the jasmonate-responsive activation of terpenoid indole alkaloid biosynthetic genes. ORCA3 gene expression is itself induced by jasmonate. Its promoter contains an autonomous jasmonate-responsive element (JRE). Here we describe the jasmonate-responsive activity of the JRE from the ORCA3 promoter in Arabidopsis thaliana. We found that it interacts in vitro and in vivo with the basic helix-loop-helix transcription factor AtMYC2. Analysis of JRE-mediated reporter gene expression in an atmyc2-1 mutant background showed that the activity was strictly dependent on AtMYC2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Catharanthus/genética , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Elementos de Resposta/genética , Fatores de Transcrição/genética , Arabidopsis/efeitos dos fármacos , Sequência de Bases , Catharanthus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
12.
Plant Mol Biol ; 75(4-5): 321-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21246258

RESUMO

Plant defense against microbial pathogens depends on the action of several endogenously produced hormones, including jasmonic acid (JA) and ethylene (ET). In defense against necrotrophic pathogens, the JA and ET signaling pathways synergize to activate a specific set of defense genes including PLANT DEFENSIN1.2 (PDF1.2). The APETALA2/Ethylene Response Factor (AP2/ERF)-domain transcription factor ORA59 acts as the integrator of the JA and ET signaling pathways and is the key regulator of JA- and ET-responsive PDF1.2 expression. The present study was aimed at the identification of elements in the PDF1.2 promoter conferring the synergistic response to JA/ET and interacting with ORA59. We show that the PDF1.2 promoter was activated synergistically by JA and the ET-releasing agent ethephon due to the activity of two GCC boxes. ORA59 bound in vitro to these GCC boxes and trans-activated the PDF1.2 promoter in transient assays via these two boxes. Using the chromatin immunoprecipitation technique we were able to show that ORA59 bound the PDF1.2 promoter in vivo. Finally, we show that a tetramer of a single GCC box conferred JA/ethephon-responsive expression, demonstrating that the JA and ET signaling pathways converge to a single type of GCC box. Therefore ORA59 and two functionally equivalent GCC box binding sites form the module that enables the PDF1.2 gene to respond synergistically to simultaneous activation of the JA and ET signaling pathways.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Defensinas/genética , Fatores de Transcrição/fisiologia , Sequência de Bases , Sítios de Ligação/genética , Ciclopentanos/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Etilenos/metabolismo , Genes de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais , Ativação Transcricional
13.
Planta ; 230(5): 1047-55, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19705146

RESUMO

Fusarium and Alternaria spp. are phytopathogenic fungi which are known to be virulent on broomrapes and to produce sphinganine-analog mycotoxins (SAMs). AAL-toxin is a SAM produced by Alternaria alternata which causes the inhibition of sphinganine N-acyltransferase, a key enzyme in sphingolipid biosynthesis, leading to accumulation of sphingoid bases. These long chain bases (LCBs) are determinant in the occurrence of programmed cell death (PCD) in susceptible plants. We showed that broomrapes are sensitive to AAL-toxin, which is not common plant behavior, and that AAL-toxin triggers cell death at the apex of the radicle as well as LCB accumulation and DNA laddering. We also demonstrated that three Lag1 homologs, encoding components of sphinganine N-acyltransferase in yeast, are present in the Orobanche cumana genome and two of them are mutated leading to an enhanced susceptibility to AAL-toxin. We therefore propose a model for the molecular mechanism governing broomrape susceptibility to the fungus Alternaria alternata.


Assuntos
Orobanchaceae/efeitos dos fármacos , Orobanche/efeitos dos fármacos , Esfingosina/toxicidade , Sequência de Aminoácidos , Morte Celular/efeitos dos fármacos , Clonagem Molecular , Fragmentação do DNA/efeitos dos fármacos , Germinação/efeitos dos fármacos , Dados de Sequência Molecular , Orobanchaceae/metabolismo , Orobanchaceae/microbiologia , Orobanche/citologia , Orobanche/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/microbiologia , Sementes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
14.
Metab Eng ; 9(2): 125-32, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17157545

RESUMO

In Catharanthus roseus, monomeric terpenoid indole alkaloids (TIAs) are biosynthesized in specific tissues, particularly in roots, but failed to be produced by in vitro undifferentiated suspension cells. In this paper, we describe the impact of the root-specific MADS-box transcription factor Agamous-like 12 (Agl12) from Arabidopsis thaliana on the differentiation of suspension cells from C. roseus. The expression of Agl12 is sufficient to promote an organization of suspension cells into globular parenchyma-like aggregates but is insufficient by itself to induce complete morphological root differentiation. Agl12 expression selectively increases the expression of genes encoding enzymes involved in the early biosynthesis steps of the terpenic precursor of alkaloids. The transgenic cell lines expressing Agl12 produced significant amounts of ajmalicine, an antihypertensive TIA that normally accumulates in C. roseus roots. The present paper indicates that transcription factors involved in tissue or organ differentiation may constitute new metabolic engineering tools that could help to design in vitro cultured cells able to produce specific valuable secondary metabolites.


Assuntos
Proteína AGAMOUS de Arabidopsis/metabolismo , Alcaloides/biossíntese , Catharanthus/fisiologia , Melhoramento Genético/métodos , Engenharia de Proteínas/métodos , Proteína AGAMOUS de Arabidopsis/genética , Proliferação de Células , Células Cultivadas , Proteínas Recombinantes/metabolismo , Técnicas de Cultura de Tecidos/métodos , Transfecção/métodos
16.
J Exp Bot ; 54(392): 2587-8, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12966042

RESUMO

A cDNA encoding a bHLH transcription factor was isolated by the yeast one-hybrid system from a Catharanthus roseus cDNA library using the G-box element of the Strictosidine synthase gene promoter as bait. The corresponding protein (named CrMYC1) was shown to bind specifically to the G-box in yeast. In C. roseus suspension cells CrMYC1 mRNA levels are induced by fungal elicitor and jasmonate suggesting that CrMYC1 may be involved in the regulation of gene expression in response to these signals.


Assuntos
Asteraceae/metabolismo , Carbono-Nitrogênio Liases/genética , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Asteraceae/efeitos dos fármacos , Asteraceae/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sequências Hélice-Alça-Hélice , Dados de Sequência Molecular , Oxilipinas , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...