Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 87, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368399

RESUMO

Human osteosarcoma (OS) is a relatively rare malignancy preferentially affecting long body bones which prognosis is often poor also due to the lack of effective therapies. Clinical management of this cancer basically relies on surgical removal of primary tumor coupled with radio/chemotherapy. Unfortunately, most osteosarcoma cells are resistant to conventional therapy, with the undergoing epithelial-mesenchymal transition (EMT) giving rise to gene expression reprogramming, thus increasing cancer cell invasiveness and metastatic potential. Alternative clinical approaches are thus urgently needed. In this context, the recently described ferroptotic cell death represents an attractive new strategy to efficiently kill cancer cells, since most chemoresistant and mesenchymal-shaped tumors display high susceptibility to pro-ferroptotic compounds. However, cancer cells have also evolved anti-ferroptotic strategies, which somehow sustain their survival upon ferroptosis induction. Indeed, here we show that osteosarcoma cell lines display heterogeneous sensitivity to ferroptosis execution, correlating with the mesenchymal phenotype, which is consistently affected by the expression of the well-known anti-ferroptotic factor ferroptosis suppressor protein 1 (FSP1). Interestingly, inhibiting the activity or expression of FSP1 restores cancer cell sensitivity to ferroptosis. Moreover, we also found that: i) AKRs might also contribute to resistance; ii) NRF2 enhances FSP1 expression upon ferroptosis induction; while iii) p53 contributes to the regulation of FSP1 basal expression in OS cells.In conclusion, FSP1 expression can potentially be used as a valuable predictive marker of OS sensitivity to ferroptosis and as a new potential therapeutic target.

2.
Biology (Basel) ; 11(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358275

RESUMO

BACKGROUND: IBD is a spectrum of pathologies characterized by dysregulated immune activation leading to uncontrolled response against the intestine, thus resulting in chronic gut inflammation and tissue damage. Due to its complexity, the molecular mechanisms responsible for disease onset and progression are still elusive, thus requiring intense research effort. In this context, the development of models replicating the etiopathology of IBD and allowing the testing of new potential therapies is critical. METHODS: Colon from C57BL/6 or BALB/c mice was cultivated in a Gut-Ex-Vivo System (GEVS), exposed for 5 h to DNBS 1.5 or 2.5 mg/mL, in presence or absence of two probiotic formulations (P1 = Bifidobacterium breve BR03 (DSM16604) and B632 (DSM24706); P2 = Lacticaseibacillus rhamnosus LR04 (DSM16605), Lactiplantibacillus plantarum LP14 (DSM33401) and Lacticaseibacillus paracasei LPC09), and the main hallmarks of IBD were evaluated. RESULTS: Gene expression analysis revealed the following DNBS-induced effects: (i) compromised tight junction organization, responsible for tissue permeability dysregulation; (ii) induction of ER stress, and (iii) tissue inflammation in colon of C57BL/6 mice. Moreover, the concomitant DNBS-induced apoptosis and ferroptosis pathways were evident in colon from both BALB/c and C57BL/6 mice. Finally, the co-administration of probiotics completely prevented the detrimental effects of DNBS. CONCLUSIONS: Overall, we have provided results demonstrating that GEVS is a consistent, reliable, and cost-effective system for modeling DNBS-induced IBD, useful for studying the onset and progression of human disease at the molecular level, while also reducing animal suffering. Moreover, we have confirmed the beneficial effect of probiotics administration in promoting the remission of IBD.

3.
Biology (Basel) ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209277

RESUMO

Inflammatory bowel disease (IBD) is a complex, chronic, and dysregulated inflammatory condition which etiology is still largely unknown. Its prognosis and disease progression are highly variable and unpredictable. IBD comprises several heterogeneous inflammatory conditions ranging from Ulcerative Colitis (UC) to Crohn's Disease (CD). Importantly, a definite, well-established, and effective clinical treatment for these pathologies is still lacking. The urgent need for treatment is further supported by the notion that patients affected by UC or CD are also at risk of developing cancer. Therefore, a deeper understanding of the molecular mechanisms at the basis of IBD development and progression is strictly required to design new and efficient therapeutic regimens. Although the development of animal models has undoubtedly facilitated the study of IBD, such in vivo approaches are often expensive and time-consuming. Here we propose an organ ex vivo culture (Gut-Ex-Vivo system, GEVS) based on colon from Balb/c mice cultivated in a dynamic condition, able to model the biochemical and morphological features of the mouse models exposed to DNBS (5-12 days), in 5 h. Indeed, upon DNBS exposure, we observed a dose-dependent: (i) up-regulation of the stress-related protein transglutaminase 2 (TG2); (ii) increased intestinal permeability associated with deregulated tight junction protein expression; (iii) increased expression of pro-inflammatory cytokines, such as TNFα, IFNγ, IL1ß, IL6, IL17A, and IL15; (iv) down-regulation of the anti-inflammatory IL10; and (v) induction of Endoplasmic Reticulum stress (ER stress), all markers of IBD. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of IBD, in a time- and cost-effective manner.

4.
Nutrients ; 13(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917155

RESUMO

Exposure to gluten, a protein present in wheat rye and barley, is the major inducer for human Celiac Disease (CD), a chronic autoimmune enteropathy. CD occurs in about 1% worldwide population, in genetically predisposed individuals bearing human leukocyte antigen (HLA) DQ2/DQ8. Gut epithelial cell stress and the innate immune activation are responsible for the breaking oral tolerance to gliadin, a gluten component. To date, the only treatment available for CD is a long-term gluten-free diet. Several studies have shown that an altered composition of the intestinal microbiota (dysbiosis) could play a key role in the pathogenesis of CD through the modulation of intestinal permeability and the regulation of the immune system. Here, we show that gliadin induces a chronic endoplasmic reticulum (ER) stress condition in the small intestine of a gluten-sensitive mouse model and that the coadministration of probiotics efficiently attenuates both the unfolded protein response (UPR) and gut inflammation. Moreover, the composition of probiotics formulations might differ in their activity at molecular level, especially toward the three axes of the UPR. Therefore, probiotics administration might potentially represent a new valuable strategy to treat gluten-sensitive patients, such as those affected by CD.


Assuntos
Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Intolerância Alimentar/terapia , Trato Gastrointestinal/patologia , Gliadina/efeitos adversos , Glutens/efeitos adversos , Inflamação/patologia , Probióticos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células CACO-2 , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Permeabilidade , Probióticos/administração & dosagem , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/metabolismo , Regulação para Cima
5.
Cell Death Discov ; 7(1): 45, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712560

RESUMO

Celiac disease (CD) is a complex immune-mediated chronic disease characterized by a consistent inflammation of the gastrointestinal tract induced by gluten intake in genetically predisposed individuals. Although initiated by the interaction between digestion-derived gliadin, a gluten component, peptides, and the intestinal epithelium, the disorder is highly complex and involving other components of the intestine, such as the immune system. Therefore, conventional model systems, mainly based on two- or three-dimension cell cultures and co-cultures, cannot fully recapitulate such a complex disease. The development of mouse models has facilitated the study of different interacting cell types involved in the disorder, together with the impact of environmental factors. However, such in vivo models are often expensive and time consuming. Here we propose an organ ex vivo culture (gut-ex-vivo system) based on small intestines from gluten-sensitive mice cultivated in a dynamic condition, able to fully recapitulate the biochemical and morphological features of the mouse model exposed to gliadin (4 weeks), in 16 h. Indeed, upon gliadin exposure, we observed: i) a down-regulation of cystic fibrosis transmembrane regulator (CFTR) and an up-regulation of transglutaminase 2 (TG2) at both mRNA and protein levels; ii) increased intestinal permeability associated with deregulated tight junction protein expression; iii) induction and production of pro-inflammatory cytokines such as interleukin (IL)-15, IL-17 and interferon gamma (IFNγ); and iv) consistent alteration of intestinal epithelium/villi morphology. Altogether, these data indicate that the proposed model can be efficiently used to study the pathogenesis of CD, test new or repurposed molecules to accelerate the search for new treatments, and to study the impact of the microbiome and derived metabolites, in a time- and cost- effective manner.

6.
PLoS One ; 16(1): e0245302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33412572

RESUMO

This study aims to investigate cholesterol metabolism in a mouse model with cystic fibrosis (CF) by the comparison of affected homozygous versus wild type (WT) mice. In particular, we evaluated the effects of a diet enriched with cholesterol in both mice groups in comparison with the normal diet. To this purpose, beyond serum and liver cholesterol, we analyzed serum phytosterols as indirect markers of intestinal absorption of cholesterol, liver lathosterol as indirect marker of de novo cholesterol synthesis, liver cholestanol (a catabolite of bile salts synthesis) and the liver mRNA levels of LDL receptor (LDLR), 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoAR), acyl CoA:cholesterol acyl transferase 2 (ACAT2), cytochrome P450 7A1 (CYP7A1) and tumor necrosis factor alpha (TNFα). CF mice showed lower intestinal absorption and higher liver synthesis of cholesterol than WT mice. In WT mice, the cholesterol supplementation inhibits the synthesis of liver cholesterol and enhances its catabolism, while in CF mice we did not observe a reduction of LDLR and HMG-CoAR expression (probably due to an altered feed-back), causing an increase of intracellular cholesterol. In addition, we observed a further increase (5-fold) in TNFα mRNA levels. This preliminary study suggests that in CF mice there is a vicious circle in which the altered synthesis/secretion of bile salts may reduce the digestion/absorption of cholesterol. As a result, the liver increases the biosynthesis of cholesterol that accumulates in the cells, triggering inflammation and further compromising the metabolism of bile salts.


Assuntos
Colesterol/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Mutação , Esteroide Hidroxilases/metabolismo , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Feminino , Homozigoto , Masculino , Taxa de Depuração Metabólica , Camundongos
7.
Cell Cycle ; 19(19): 2411-2425, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32816618

RESUMO

Human skin melanoma is one of the most aggressive and difficult to treat human malignancies, with an increasing incidence over the years. While the resection of the early diagnosed primary tumor remains the best clinical approach, advanced/metastatic melanoma still remains with a poor prognosis. Indeed, although enormous progress in the therapeutic treatment of human tumors has been made in recent years, patients affected by metastatic melanoma are still poorly affected by these clinical advances. Therefore, new valuable therapeutic approaches are urgently needed, to design and define effective treatments to consistently increase the overall survival rate of patients affected by this malignancy. In this review we summarize the main signaling pathways studied to kill human skin melanoma, and introduce the ferroptotic cell death as a new pathway to be explored to eradicate this tumor.


Assuntos
Ferroptose , Melanoma/secundário , Neoplasias Cutâneas/patologia , Animais , Antineoplásicos/uso terapêutico , Ferroptose/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Terapia de Alvo Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
8.
Aging (Albany NY) ; 11(7): 2003-2019, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30981209

RESUMO

In celiac disease (CD), an intolerance to dietary gluten/gliadin, antigenic gliadin peptides trigger an HLA-DQ2/DQ8-restricted adaptive Th1 immune response. Epithelial stress, induced by other non-antigenic gliadin peptides, is required for gliadin to become fully immunogenic. We found that cystic-fibrosis-transmembrane-conductance-regulator (CFTR) acts as membrane receptor for gliadin-derived peptide P31-43, as it binds to CFTR and impairs its channel function. P31-43-induced CFTR malfunction generates epithelial stress and intestinal inflammation. Maintaining CFTR in an active open conformation by the CFTR potentiators VX-770 (Ivacaftor) or Vrx-532, prevents P31-43 binding to CFTR and controls gliadin-induced manifestations. Here, we evaluated the possibility that the over-the-counter nutraceutical genistein, known to potentiate CFTR function, would allow to control gliadin-induced alterations. We demonstrated that pre-treatment with genistein prevented P31-43-induced CFTR malfunction and an epithelial stress response in Caco-2 cells. These effects were abrogated when the CFTR gene was knocked out by CRISP/Cas9 technology, indicating that genistein protects intestinal epithelial cells by potentiating CFTR function. Notably, genistein protected gliadin-sensitive mice from intestinal CFTR malfunction and gliadin-induced inflammation as it prevented gliadin-induced IFN-γ production by celiac peripheral-blood-mononuclear-cells (PBMC) cultured ex-vivo in the presence of P31-43-challenged Caco-2 cells. Our results indicate that natural compounds capable to increase CFTR channel gating might be used for the treatment of CD.


Assuntos
Doença Celíaca/prevenção & controle , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Genisteína/farmacologia , Gliadina/toxicidade , Fragmentos de Peptídeos/toxicidade , Animais , Células CACO-2 , Doença Celíaca/etiologia , Doença Celíaca/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Gliadina/imunologia , Humanos , Interferon gama/biossíntese , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Fragmentos de Peptídeos/imunologia , Ligação Proteica
9.
Cell Death Dis ; 10(4): 258, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874543

RESUMO

Under physiological conditions, a finely tuned system of cellular adaptation allows the intestinal mucosa to maintain the gut barrier function while avoiding excessive immune responses to non-self-antigens from dietary origin or from commensal microbes. This homeostatic function is compromised in cystic fibrosis (CF) due to loss-of-function mutations in the CF transmembrane conductance regulator (CFTR). Recently, we reported that mice bearing defective CFTR are abnormally susceptible to a celiac disease-like enteropathy, in thus far that oral challenge with the gluten derivative gliadin elicits an inflammatory response. However, the mechanisms through which CFTR malfunction drives such an exaggerated response to dietary protein remains elusive. Here we demonstrate that the proteostasis regulator/transglutaminase 2 (TGM2) inhibitor cysteamine restores reduced Beclin 1 (BECN1) protein levels in mice bearing cysteamine-rescuable F508del-CFTR mutant, either in homozygosis or in compound heterozygosis with a null allele, but not in knock-out CFTR mice. When cysteamine restored BECN1 expression, autophagy was increased and gliadin-induced inflammation was reduced. The beneficial effects of cysteamine on F508del-CFTR mice were lost when these mice were backcrossed into a Becn1 haploinsufficient/autophagy-deficient background. Conversely, the transfection-enforced expression of BECN1 in human intestinal epithelial Caco-2 cells mitigated the pro-inflammatory cellular stress response elicited by the gliadin-derived P31-43 peptide. In conclusion, our data provide the proof-of-concept that autophagy stimulation may mitigate the intestinal malfunction of CF patients.


Assuntos
Autofagia/efeitos dos fármacos , Cisteamina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Gliadina/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Autofagia/genética , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Células CACO-2 , Cisteamina/uso terapêutico , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/metabolismo , Gliadina/toxicidade , Heterozigoto , Homozigoto , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/toxicidade , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/antagonistas & inibidores , Transglutaminases/metabolismo
10.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30498130

RESUMO

Intestinal handling of dietary proteins usually prevents local inflammatory and immune responses and promotes oral tolerance. However, in ~ 1% of the world population, gluten proteins from wheat and related cereals trigger an HLA DQ2/8-restricted TH1 immune and antibody response leading to celiac disease. Prior epithelial stress and innate immune activation are essential for breaking oral tolerance to the gluten component gliadin. How gliadin subverts host intestinal mucosal defenses remains elusive. Here, we show that the α-gliadin-derived LGQQQPFPPQQPY peptide (P31-43) inhibits the function of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel pivotal for epithelial adaptation to cell-autonomous or environmental stress. P31-43 binds to, and reduces ATPase activity of, the nucleotide-binding domain-1 (NBD1) of CFTR, thus impairing CFTR function. This generates epithelial stress, tissue transglutaminase and inflammasome activation, NF-κB nuclear translocation and IL-15 production, that all can be prevented by potentiators of CFTR channel gating. The CFTR potentiator VX-770 attenuates gliadin-induced inflammation and promotes a tolerogenic response in gluten-sensitive mice and cells from celiac patients. Our results unveil a primordial role for CFTR as a central hub orchestrating gliadin activities and identify a novel therapeutic option for celiac disease.


Assuntos
Doença Celíaca/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Gliadina/farmacologia , Fragmentos de Peptídeos/farmacologia , Adolescente , Aminofenóis/administração & dosagem , Aminofenóis/farmacologia , Animais , Células CACO-2 , Doença Celíaca/tratamento farmacológico , Doença Celíaca/genética , Linhagem Celular , Criança , Regulador de Condutância Transmembrana em Fibrose Cística/química , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Domínios Proteicos , Quinolonas/administração & dosagem , Quinolonas/farmacologia , Adulto Jovem
11.
EMBO Rep ; 19(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752334

RESUMO

Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response.


Assuntos
Fibrose Cística/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação ao GTP/genética , Fatores de Transcrição de Choque Térmico/genética , Transglutaminases/genética , Animais , Fibrose Cística/patologia , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Humanos , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Processamento de Proteína Pós-Traducional/genética , Proteostase/genética , Transdução de Sinais
12.
Cell Death Dis ; 8(1): e2544, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28079883

RESUMO

Cystic fibrosis (CF), the most common lethal monogenic disease in Caucasians, is characterized by recurrent bacterial infections and colonization, mainly by Pseudomonas aeruginosa, resulting in unresolved airway inflammation. CF is caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which functions as a chloride channel in epithelial cells, macrophages, and other cell types. Impaired bacterial handling by macrophages is a feature of CF airways, although it is still debated how defective CFTR impairs bacterial killing. Recent evidence indicates that a defective autophagy in CF macrophages leads to alterations of bacterial clearance upon infection. Here we use bone marrow-derived macrophages from transgenic mice to provide the genetic proof that defective CFTR compromises both uptake and clearance of internalized Pseudomonas aeruginosa. We demonstrate that the proteostasis regulator cysteamine, which rescues the function of the most common F508del-CFTR mutant and hence reduces lung inflammation in CF patients, can also repair the defects of CF macrophages, thus restoring both bacterial internalization and clearance through a process that involves upregulation of the pro-autophagic protein Beclin 1 and re-establishment of the autophagic pathway. Altogether these results indicate that cysteamine restores the function of several distinct cell types, including that of macrophages, which might contribute to its beneficial effects on CF.


Assuntos
Proteína Beclina-1/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Macrófagos/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Animais , Proteína Beclina-1/biossíntese , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Cisteamina/administração & dosagem , Fibrose Cística/genética , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/microbiologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...