Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37309893

RESUMO

The regulation of intramolecular vibrational energy redistribution (IVR) to influence energy flow within molecular scaffolds provides a way to steer fundamental processes of chemistry, such as chemical reactivity in proteins and design of molecular diodes. Using two-dimensional infrared (2D IR) spectroscopy, changes in the intensity of vibrational cross-peaks are often used to evaluate different energy transfer pathways present in small molecules. Previous 2D IR studies of para-azidobenzonitrile (PAB) demonstrated that several possible energy pathways from the N3 to the cyano-vibrational reporters were modulated by Fermi resonance, followed by energy relaxation into the solvent [Schmitz et al., J. Phys. Chem. A 123, 10571 (2019)]. In this work, the mechanisms of IVR were hindered via the introduction of a heavy atom, selenium, into the molecular scaffold. This effectively eliminated the energy transfer pathway and resulted in the dissipation of the energy into the bath and direct dipole-dipole coupling between the two vibrational reporters. Several structural variations of the aforementioned molecular scaffold were employed to assess how each interrupted the energy transfer pathways, and the evolution of 2D IR cross-peaks was measured to assess the changes in the energy flow. By eliminating the energy transfer pathways through isolation of specific vibrational transitions, through-space vibrational coupling between an azido (N3) and a selenocyanato (SeCN) probe is facilitated and observed for the first time. Thus, the rectification of this molecular circuitry is accomplished through the inhibition of energy flow using heavy atoms to suppress the anharmonic coupling and, instead, favor a vibrational coupling pathway.

2.
Cell Rep ; 41(3): 111514, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261012

RESUMO

We identify ADIRF-AS1 circadian long non-coding RNA (lncRNA). Deletion of ADIRF-AS1 in U2OS cells alters rhythmicity of clock-controlled genes and expression of extracellular matrix genes. ADIRF-AS1 interacts with all components of the PBAF (PBRM1/BRG1) complex in U2OS cells. Because PBRM1 is a tumor suppressor mutated in over 40% of clear cell renal carcinoma (ccRCC) cases, we evaluate ADIRF-AS1 in ccRCC cells. Reducing ADIRF-AS1 expression in ccRCC cells decreases expression of some PBAF-suppressed genes. Expression of these genes is partially rescued by PBRM1 loss, consistent with ADIRF-AS1 acting in part to modulate PBAF. ADIRF-AS1 expression correlates with survival in human ccRCC, particularly in PBRM1 wild-type, but not mutant, tumors. Loss of ADIRF-AS1 eliminates in vivo tumorigenesis, partially rescued by concurrent loss of PBRM1 only when co-injected with Matrigel, suggesting a PBRM1-independent function of ADIRF-AS1. Our findings suggest that ADIRF-AS1 functions partly through PBAF to regulate specific genes as a BMAL1-CLOCK-regulated, oncogenic lncRNA.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Fatores de Transcrição ARNTL , Carcinogênese/genética , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , RNA Longo não Codificante/genética
3.
J Chem Phys ; 152(7): 074201, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087671

RESUMO

Cyanamides (NCN) have been shown to have a larger transition dipole strength than cyano-probes. In addition, they have similar structural characteristics and vibrational lifetimes to the azido-group, suggesting their utility as infrared (IR) spectroscopic reporters for structural dynamics in biomolecules. To access the efficacy of NCN as an IR probe to capture the changes in the local environment, several model systems were evaluated via 2D IR spectroscopy. Previous work by Cho [G. Lee, D. Kossowska, J. Lim, S. Kim, H. Han, K. Kwak, and M. Cho, J. Phys. Chem. B 122(14), 4035-4044 (2018)] showed that phenylalanine analogues containing NCN show strong anharmonic coupling that can complicate the interpretation of structural dynamics. However, when NCN is embedded in 5-membered ring scaffolds, as in N-cyanomaleimide and N-cyanosuccinimide, a unique band structure is observed in the 2D IR spectrum that is not predicted by simple anharmonic frequency calculations. Further investigation indicated that electron delocalization plays a role in the origins of the band structure. In particular, the origin of the lower frequency transitions is likely a result of direct interaction with the solvent.


Assuntos
Cianamida/química , Simulação de Dinâmica Molecular , Teoria da Densidade Funcional , Estrutura Molecular , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...