Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(7): e1010733, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849637

RESUMO

Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Microscopia Crioeletrônica , Humanos , Mutação , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Ratos , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
J Biol Chem ; 298(8): 102204, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772495

RESUMO

The protozoan parasite Trypanosoma cruzi is the causative agent of American trypanosomiasis, otherwise known as Chagas disease. To survive in the host, the T. cruzi parasite needs antioxidant defense systems. One of these is a hybrid heme peroxidase, the T. cruzi ascorbate peroxidase-cytochrome c peroxidase enzyme (TcAPx-CcP). TcAPx-CcP has high sequence identity to members of the class I peroxidase family, notably ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP), as well as a mitochondrial peroxidase from Leishmania major (LmP). The aim of this work was to solve the structure and examine the reactivity of the TcAPx-CcP enzyme. Low temperature electron paramagnetic resonance spectra support the formation of an exchange-coupled [Fe(IV)=O Trp233•+] compound I radical species, analogous to that used in CcP and LmP. We demonstrate that TcAPx-CcP is similar in overall structure to APX and CcP, but there are differences in the substrate-binding regions. Furthermore, the electron transfer pathway from cytochrome c to the heme in CcP and LmP is preserved in the TcAPx-CcP structure. Integration of steady state kinetic experiments, molecular dynamic simulations, and bioinformatic analyses indicates that TcAPx-CcP preferentially oxidizes cytochrome c but is still competent for oxidization of ascorbate. The results reveal that TcAPx-CcP is a credible cytochrome c peroxidase, which can also bind and use ascorbate in host cells, where concentrations are in the millimolar range. Thus, kinetically and functionally TcAPx-CcP can be considered a hybrid peroxidase.


Assuntos
Citocromo-c Peroxidase , Trypanosoma cruzi , Antioxidantes , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Doença de Chagas/parasitologia , Citocromo-c Peroxidase/química , Citocromo-c Peroxidase/genética , Citocromo-c Peroxidase/metabolismo , Citocromos c/metabolismo , Heme/metabolismo , Humanos , Peroxidase/metabolismo , Peroxidases/metabolismo , Especificidade por Substrato , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/metabolismo
4.
J Inorg Biochem ; 225: 111604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571402

RESUMO

The kynurenine pathway is the major route of tryptophan metabolism. The first step of this pathway is catalysed by one of two heme-dependent dioxygenase enzymes - tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) - leading initially to the formation of N-formylkynurenine (NFK). In this paper, we present a crystal structure of a bacterial TDO from X. campestris in complex with l-kynurenine, the hydrolysed product of NFK. l-kynurenine is bound at the active site in a similar location to the substrate (l-Trp). Hydrogen bonding interactions with Arg117 and the heme 7-propionate anchor the l-kynurenine molecule into the pocket. A mechanism for the hydrolysis of NFK in the active site is presented.


Assuntos
Cinurenina/metabolismo , Triptofano Oxigenase/metabolismo , Ligação de Hidrogênio , Ferro/química , Cinurenina/química , Oxirredução , Ligação Proteica , Estereoisomerismo , Triptofano/química , Triptofano Oxigenase/química , Xanthomonas campestris/enzimologia
5.
Angew Chem Int Ed Engl ; 60(26): 14578-14585, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33826799

RESUMO

Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Šand 1.50 Šcrystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.


Assuntos
Lasers , Peroxidases/química , Cristalografia por Raios X , Modelos Moleculares , Peroxidases/metabolismo
6.
Angew Chem Weinheim Bergstr Ger ; 133(26): 14699-14706, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38505375

RESUMO

Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV=O or FeIV-OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV=O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Šand 1.50 Šcrystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.

7.
J Biol Chem ; 295(38): 13277-13286, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723862

RESUMO

The EAG (ether-à-go-go) family of voltage-gated K+ channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels. Using heme-affinity pulldown assays and proteomics of lysates from primary cortical neurons, we identified that an EAG channel, hERG3 (Kv11.3), binds to heme. In whole-cell electrophysiology experiments, we identified that heme inhibits hERG3 channel activity. In addition, we expressed the Cap and PAS domain of hERG3 in Escherichia coli and, using spectroscopy and kinetics, identified the PAS domain as the location for heme binding. The results identify heme as a regulator of hERG3 channel activity. These observations are discussed in the context of the emerging role for heme as a regulator of ion channel activity in cells.


Assuntos
Córtex Cerebral/química , Canais de Potássio Éter-A-Go-Go/química , Heme/química , Neurônios/química , Córtex Cerebral/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Heme/metabolismo , Humanos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos
8.
Biochem Cell Biol ; 98(4): 518-524, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32125881

RESUMO

The glycolytic pathway of the enteric pathogen Campylobacter jejuni is incomplete; the absence of phosphofructokinase means that the suppression of futile cycling at this point in the glycolytic-gluconeogenic pathway might not be required, and therefore the mechanism for controlling pathway flux is likely to be quite different or absent. In this study, the characteristics of fructose-1,6-bisphosphatase (FBPase) of C.jejuni are described and the regulation of this enzyme is compared with the equivalent enzymes from organisms capable of glycolysis. The enzyme is insensitive to AMP inhibition, unlike other type I FBPases. Campylobacterjejuni FBPase also shows limited sensitivity to other glycolytic and gluconeogenic intermediates. The allosteric cooperative control of the enzyme's activity found in type I FBPases appears to have been lost.


Assuntos
Campylobacter jejuni/enzimologia , Frutose-Bifosfatase/metabolismo , Frutose/metabolismo , Campylobacter jejuni/isolamento & purificação , Campylobacter jejuni/patogenicidade , Gluconeogênese , Glicólise , Cinética , Modelos Biológicos , Elementos Estruturais de Proteínas
9.
Proc Natl Acad Sci U S A ; 117(12): 6484-6490, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152099

RESUMO

In redox metalloenzymes, the process of electron transfer often involves the concerted movement of a proton. These processes are referred to as proton-coupled electron transfer, and they underpin a wide variety of biological processes, including respiration, energy conversion, photosynthesis, and metalloenzyme catalysis. The mechanisms of proton delivery are incompletely understood, in part due to an absence of information on exact proton locations and hydrogen bonding structures in a bona fide metalloenzyme proton pathway. Here, we present a 2.1-Å neutron crystal structure of the complex formed between a redox metalloenzyme (ascorbate peroxidase) and its reducing substrate (ascorbate). In the neutron structure of the complex, the protonation states of the electron/proton donor (ascorbate) and all of the residues involved in the electron/proton transfer pathway are directly observed. This information sheds light on possible proton movements during heme-catalyzed oxygen activation, as well as on ascorbate oxidation.


Assuntos
Elétrons , Metaloproteínas/química , Prótons , Ascorbato Peroxidases/química , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Catálise , Heme/química , Ligação de Hidrogênio , Metaloproteínas/metabolismo , Modelos Moleculares , Difração de Nêutrons , Oxirredução
10.
Methods Enzymol ; 634: 379-389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32093841

RESUMO

By combining the normal practice for X-ray crystallography of collecting diffraction data at 100K with neutron crystallography the structures of cryo-trapped enzyme intermediates have been determined, revealing the positions of the previously hidden hydrogens that are essential to a better understanding of the involved mechanism.


Assuntos
Difração de Nêutrons , Nêutrons , Cristalografia , Cristalografia por Raios X , Heme , Peroxidases
11.
Methods Enzymol ; 634: xvii, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32093845
12.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527239

RESUMO

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Assuntos
Proteínas CLOCK/química , Elementos E-Box , Heme/química , Transdução de Sinais , Fatores de Transcrição ARNTL/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Catálise , Relógios Circadianos , Criptocromos/química , DNA/química , Elétrons , Escherichia coli/metabolismo , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Oxigênio/química , Proteínas Circadianas Period/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Transcrição Gênica
13.
Nat Commun ; 9(1): 3354, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120224

RESUMO

The originally published version of this article contained an error in the subheading 'Heme is required for CO-dependent channel activation', which was incorrectly given as 'Hame is required for CO-dependent channel activation'. This has now been corrected in both the PDF and HTML versions of the Article.

14.
Acta Crystallogr D Struct Biol ; 74(Pt 8): 792-799, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30082515

RESUMO

The use of boiled-off liquid nitrogen to maintain protein crystals at 100 K during X-ray data collection has become almost universal. Applying this to neutron protein crystallography offers the opportunity to significantly broaden the scope of biochemical problems that can be addressed, although care must be taken in assuming that direct extrapolation to room temperature is always valid. Here, the history to date of neutron protein cryo-crystallography and the particular problems and solutions associated with the mounting and cryocooling of the larger crystals needed for neutron crystallography are reviewed. Finally, the outlook for further cryogenic neutron studies using existing and future neutron instrumentation is discussed.


Assuntos
Temperatura Baixa , Difração de Nêutrons/métodos , Proteínas/química , Cristalografia , História do Século XX , História do Século XXI , Difração de Nêutrons/história
16.
Nat Commun ; 9(1): 907, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500353

RESUMO

Despite being highly toxic, carbon monoxide (CO) is also an essential intracellular signalling molecule. The mechanisms of CO-dependent cell signalling are poorly defined, but are likely to involve interactions with heme proteins. One such role for CO is in ion channel regulation. Here, we examine the interaction of CO with KATP channels. We find that CO activates KATP channels and that heme binding to a CXXHX16H motif on the SUR2A receptor is required for the CO-dependent increase in channel activity. Spectroscopic and kinetic data were used to quantify the interaction of CO with the ferrous heme-SUR2A complex. The results are significant because they directly connect CO-dependent regulation to a heme-binding event on the channel. We use this information to present molecular-level insight into the dynamic processes that control the interactions of CO with a heme-regulated channel protein, and we present a structural framework for understanding the complex interplay between heme and CO in ion channel regulation.


Assuntos
Monóxido de Carbono/metabolismo , Canais Iônicos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Células HEK293 , Heme/metabolismo , Humanos , Ativação do Canal Iônico , Canais KATP/metabolismo , Modelos Moleculares , Análise Espectral Raman , Receptores de Sulfonilureias/química , Receptores de Sulfonilureias/metabolismo
17.
J Inorg Biochem ; 180: 230-234, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29317104

RESUMO

Ascorbate peroxidase (APX) is a class I heme peroxidase. It has two sites for binding of substrates. One is close to the γ-heme edge and is used for oxidation of ascorbate; the other is at the δ-heme edge and is used for binding of aromatic substrates [Gumiero et al., (2010) Arch. Biochem. Biophys. 500, 13-20]. In this work, we have examined the structural factors that control binding at the δ-heme edge by replacement of Ala134 in APX with a proline residue that is more commonly found in other class II and III peroxidases. Kinetic data indicate that replacement of Ala134 by proline has only a small effect on the catalytic mechanism, or the oxidation of ascorbate or guaiacol. Chemical modification with phenylhydrazine indicates that heme accessibility close to the δ-heme edge is only minorly affected by the substitution. We conclude that the A134P mutation alone is not enough to substantially affect the reactivity of APX towards aromatic substrates bound at the δ-heme edge. The data are relevant to the recent application of APX (APEX) in cellular imaging.


Assuntos
Alanina/metabolismo , Ascorbato Peroxidases/metabolismo , Alanina/genética , Ácido Ascórbico/metabolismo , Catálise , Cromatografia Líquida de Alta Pressão , Guaiacol/metabolismo , Heme/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Prolina/genética , Especificidade por Substrato
18.
Acc Chem Res ; 51(2): 427-435, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29327921

RESUMO

Aerobic organisms have evolved to activate oxygen from the atmosphere, which allows them to catalyze the oxidation of different kinds of substrates. This activation of oxygen is achieved by a metal center (usually iron or copper) buried within a metalloprotein. In the case of iron-containing heme enzymes, the activation of oxygen is achieved by formation of transient iron-oxo (ferryl) intermediates; these intermediates are called Compound I and Compound II. The Compound I and II intermediates were first discovered in the 1930s in horseradish peroxidase, and it is now known that these same species are used across the family of heme enzymes, which include all of the peroxidases, the heme catalases, the P450s, cytochrome c oxidase, and NO synthase. Many years have passed since the first observations, but establishing the chemical nature of these transient ferryl species remains a fundamental question that is relevant to the reactivity, and therefore the usefulness, of these species in biology. This Account summarizes experiments that were conceived and conducted at Leicester and presents our ideas on the chemical nature, stability, and reactivity of these ferryl heme species. We begin by briefly summarizing the early milestones in the field, from the 1940s and 1950s. We present comparisons between the nature and reactivity of the ferryl species in horseradish peroxidase, cytochrome c peroxidase, and ascorbate peroxidase; and we consider different modes of electron delivery to ferryl heme, from different substrates in different peroxidases. We address the question of whether the ferryl heme is best formulated as an (unprotonated) FeIV═O or as a (protonated) FeIV-OH species. A range of spectroscopic approaches (EXAFS, resonance Raman, Mossbauer, and EPR) have been used over many decades to examine this question, and in the last ten years, X-ray crystallography has also been employed. We describe how information from all of these studies has blended together to create an overall picture, and how the recent application of neutron crystallography has directly identified protonation states and has helped to clarify the precise nature of the ferryl heme in cytochrome c peroxidase and ascorbate peroxidase. We draw comparisons between the Compound I and Compound II species that we have observed in peroxidases with those found in other heme systems, notably the P450s, highlighting possible commonality across these heme ferryl systems. The identification of proton locations from neutron structures of these ferryl species opens the door for understanding the proton translocations that need to occur during O-O bond cleavage.

19.
Proc Natl Acad Sci U S A ; 115(4): 768-773, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311313

RESUMO

The multiprotein complex C1 initiates the classical pathway of complement activation on binding to antibody-antigen complexes, pathogen surfaces, apoptotic cells, and polyanionic structures. It is formed from the recognition subcomponent C1q and a tetramer of proteases C1r2C1s2 as a Ca2+-dependent complex. Here we have determined the structure of a complex between the CUB1-EGF-CUB2 fragments of C1r and C1s to reveal the C1r-C1s interaction that forms the core of C1. Both fragments are L-shaped and interlock to form a compact antiparallel heterodimer with a Ca2+ from each subcomponent at the interface. Contacts, involving all three domains of each protease, are more extensive than those of C1r or C1s homodimers, explaining why heterocomplexes form preferentially. The available structural and biophysical data support a model of C1r2C1s2 in which two C1r-C1s dimers are linked via the catalytic domains of C1r. They are incompatible with a recent model in which the N-terminal domains of C1r and C1s form a fixed tetramer. On binding to C1q, the proteases become more compact, with the C1r-C1s dimers at the center and the six collagenous stems of C1q arranged around the perimeter. Activation is likely driven by separation of the C1r-C1s dimer pairs when C1q binds to a surface. Considerable flexibility in C1s likely facilitates C1 complex formation, activation of C1s by C1r, and binding and activation of downstream substrates C4 and C4b-bound C2 to initiate the reaction cascade.


Assuntos
Complemento C1r/metabolismo , Complemento C1s/metabolismo , Animais , Células CHO , Cricetulus , Dimerização , Domínios Proteicos
20.
Acta Crystallogr D Struct Biol ; 73(Pt 2): 141-147, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177310

RESUMO

X-ray protein crystallography has, through the determination of the three-dimensional structures of enzymes and their complexes, been essential to the understanding of biological chemistry. However, as X-rays are scattered by electrons, the technique has difficulty locating the presence and position of H atoms (and cannot locate H+ ions), knowledge of which is often crucially important for the understanding of enzyme mechanism. Furthermore, X-ray irradiation, through photoelectronic effects, will perturb the redox state in the crystal. By using single-crystal spectrophotometry, reactions taking place in the crystal can be monitored, either to trap intermediates or follow photoreduction during X-ray data collection. By using neutron crystallography, the positions of H atoms can be located, as it is the nuclei rather than the electrons that scatter neutrons, and the scattering length is not determined by the atomic number. Combining the two techniques allows much greater insight into both reaction mechanism and X-ray-induced photoreduction.


Assuntos
Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Enterobacter cloacae/química , Difração de Nêutrons/métodos , Oxirredutases/química , Proteínas/química , Hidrogênio/química , Modelos Moleculares , Oxirredução , Peroxidases/química , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...