Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
2.
J Innate Immun ; 16(1): 203-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471488

RESUMO

INTRODUCTION: TNFα-inducible matrix metalloproteinases play a critical role in the process of airway remodeling in respiratory inflammatory disease including asthma. The cationic host defense peptide LL-37 is elevated in the lungs during airway inflammation. However, the impact of LL-37 on TNFα-driven processes is not well understood. Here, we examined the effect of LL-37 on TNFα-mediated responses in human bronchial epithelial cells (HBECs). METHODS: We used a slow off-rate modified aptamer-based proteomics approach to define the HBEC proteome altered in response to TNFα. Abundance of selected protein candidates and signaling intermediates was examined using immunoassays, ELISA and Western blots, and mRNA abundance was examined by qRT-PCR. RESULTS: Proteomics analysis revealed that 124 proteins were significantly altered, 12 proteins were enhanced by ≥2-fold compared to unstimulated cells, in response to TNFα. MMP9 was the topmost increased protein in response to TNFα, enhanced by ∼10-fold, and MMP13 was increased by ∼3-fold, compared to unstimulated cells. Furthermore, we demonstrated that LL-37 significantly suppressed TNFα-mediated MMP9 and MMP13 in HBEC. Mechanistic data revealed that TNFα-mediated MMP9 and MMP13 production is controlled by SRC kinase and that LL-37 enhances related upstream negative regulators, namely, phospho-AKT (T308) and TNFα-mediated TNFAIP3 or A20. CONCLUSIONS: The findings of this study suggest that LL-37 may play a role in intervening in the process of airway remodeling in chronic inflammatory respiratory disease such as asthma.


Assuntos
Remodelação das Vias Aéreas , Peptídeos Catiônicos Antimicrobianos , Asma , Brônquios , Catelicidinas , Células Epiteliais , Metaloproteinase 13 da Matriz , Metaloproteinase 9 da Matriz , Fator de Necrose Tumoral alfa , Humanos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Asma/imunologia , Asma/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteômica , Mucosa Respiratória/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
3.
Environ Pollut ; 342: 123087, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061431

RESUMO

Traffic-related air pollution (TRAP) exposure is associated with systemic health effects, which can be studied using blood-based markers. Although we have previously shown that high TRAP concentrations alter the plasma proteome, the concentration-response relationship between blood proteins and TRAP is unexplored in controlled human exposure studies. We aimed to identify concentration-dependent plasma markers of diesel exhaust (DE), a model of TRAP. Fifteen healthy non-smokers were enrolled into a double-blinded, crossover study where they were exposed to filtered air (FA) and DE at 20, 50 and 150 µg/m3 PM2.5 for 4h, separated by ≥ 4-week washouts. We collected blood at 24h post-exposure and used label-free mass spectrometry to quantify proteins in plasma. Proteins exhibiting a concentration-response, as determined by linear mixed effects models (LMEMs), were assessed for pathway enrichment using WebGestalt. Top candidates, identified by sparse partial least squares discriminant analysis and LMEMs, were confirmed using enzyme-linked immunoassays. Thereafter, we assessed correlations between proteins that showed a DE concentration-response and acute inflammatory endpoints, forced expiratory volume in 1 s (FEV1) and methacholine provocation concentration causing a 20% drop in FEV1 (PC20). DE exposure was associated with concentration-dependent alterations in 45 proteins, which were enriched in complement pathways. Of the 9 proteins selected for confirmatory immunoassays, based on complementary bioinformatic approaches to narrow targets and availability of high-quality assays, complement factor I (CFI) exhibited a significant concentration-dependent decrease (-0.02 µg/mL per µg/m3 of PM2.5, p = 0.04). Comparing to FA at discrete concentrations, CFI trended downward at 50 (-2.14 ± 1.18, p = 0.08) and significantly decreased at 150 µg/m3 PM2.5 (-2.93 ± 1.18, p = 0.02). CFI levels were correlated with FEV1, PC20 and nasal interleukin (IL)-6 and IL-1ß. This study details concentration-dependent alterations in the plasma proteome following DE exposure at concentrations relevant to occupational and community settings. CFI shows a robust concentration-response and association with established measures of airway function and inflammation.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Proteoma , Estudos Cross-Over , Testes de Função Respiratória , Interleucina-6 , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
4.
Cytokine ; 172: 156414, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918052

RESUMO

IL-33 is an alarmin produced by stromal cells and is known to promote airway inflammation. IL-33 is a critical mediator of steroid-unresponsiveness in severe asthma. We have previously shown that IFNγ, a cytokine known to be elevated in airway inflammation and severe asthma, enhances the abundance of IL-33 in bronchial epithelial cells. Previous studies have shown that environmental insults such as particulate matter results in activation of the aryl hydrocarbon receptor (AhR) and IL-33 production. However, the role of AhR in cytokine-mediated IL-33 production is unknown. In this study, we demonstrate that the knockdown of AhR results in significant decrease in IFNγ-mediated IL-33 production and phosphorylation of STAT1 (Y701), in human bronchial epithelial cells. The findings of this report suggest that AhR may be an essential component in IFNγ-mediated IL-33 production in the lungs.


Assuntos
Asma , Receptores de Hidrocarboneto Arílico , Humanos , Receptores de Hidrocarboneto Arílico/genética , Interleucina-33 , Citocinas , Células Epiteliais , Interferon gama , Inflamação
5.
Arthritis Res Ther ; 25(1): 161, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667385

RESUMO

Curcumin, a component of the South-Asian spice turmeric, elicits anti-inflammatory functions. We have previously demonstrated that a highly bioavailable formulation of cucurmin, Cureit/Acumin™ (CUR), can suppress disease onset and severity, in a collagen-induced arthritis (CIA) mouse model. In a previous study, we have also shown that the abundance of antimicrobial host defence peptides, specifically cathelicidin (CRAMP) and calprotectin (S100A8 and S100A9), is significantly increased in the joint tissues of CIA mice. Elevated levels of cathelicidin and calprotectin have been associated with the pathogenesis of rheumatoid arthritis. Therefore, in this study, we examined the effect CUR administration on the abundance of cathelicidin and calprotectin in the joints, in a CIA mouse model. Here, we demonstrate that daily oral administration of CUR significantly reduces the elevated levels of CRAMP and calprotectin to baseline in the joints of CIA mice. We also show a linear correlation between the abundance of these peptides in the joints with serum inflammatory cytokines TNFα, IFNγ, and MCP-1. Overall, our results suggest that oral administration of a bioavailable CUR can suppress cathelicidin and calprotectin in the joints and regulate both local (joints) and systemic (serum) inflammation, in inflammatory arthritis.


Assuntos
Artrite Experimental , Curcumina , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos , Catelicidinas , Complexo Antígeno L1 Leucocitário , Artrite Experimental/tratamento farmacológico , Modelos Animais de Doenças
6.
Ann Am Thorac Soc ; 20(6): 834-842, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36930796

RESUMO

Rationale: Air pollution exposure is harmful to human airways, and its impacts are best studied using concentration-response relationships. However, most concentration-response research on airway health has investigated chronic exposures, with less being known about acute effects, which can be robustly studied using controlled human exposures. Objectives: To investigate the concentration relationship between airway health measures and diesel exhaust (DE). Methods: We conducted a double-blind crossover study with 17 healthy nonsmokers exposed to filtered air and DE standardized to 20, 50, and 150 µg/m3 of particulate matter ⩽2.5 µm in aerodynamic diameter for 4 hours. Before, during, and up to 24 hours from the exposure start, we measured lung function, airway responsiveness, and airway inflammation using spirometry, methacholine challenge, and fractional exhaled nitric oxide (FeNO), respectively. In addition, we measured nasal airway inflammation using differential cell counts and cytokines in nasal lavage and epithelial lining fluid at 24 hours. We assessed DE concentration responses and associations between outcomes using linear mixed effects models and repeated measures correlations, respectively, thereafter adjusting for multiple comparisons. Results: DE exposure increased percentage ΔFeNO at 4 hours (ß = 0.16 ± 0.06). Compared with filtered air, percentage ΔFeNO trended toward an increase at concentrations of 20 µg/m3 (ß = 18.66 ± 8.76) and 50 µg/m3 (ß = 19.33 ± 8.92) and increased significantly at 150 µg/m3 (ß = 34.43 ± 8.92). In addition, DE exposure induced a trend toward increased nasal IL-6 at 24 hours (percentage difference, 0.88; 95% confidence interval, 0.08, 1.70). There were no effects of DE exposure on FeNO at 24 hours, lung function, airway responsiveness, or nasal cell counts. Conclusions: DE induces a concentration-dependent increase in FeNO, indicating that it may be a sensitive marker of an acute inflammatory response in the airways. We report responses at concentrations below those in previous controlled DE exposure studies, and we document particulate matter ⩽2.5 µm in aerodynamic diameter concentration-response estimates at exposure levels routinely experienced in the community and occupational settings. Clinical trial registered with www.clinicaltrials.gov (NCT03234790).


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Humanos , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Poluentes Atmosféricos/análise , Estudos Cross-Over , Material Particulado/efeitos adversos , Material Particulado/análise , Inflamação
7.
Ann Surg ; 278(2): e411-e421, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35920560

RESUMO

The pathogenesis of lung hypoplasia in congenital diaphragmatic hernia (CDH), a common birth defect, is poorly understood. The diaphragmatic defect can be repaired surgically, but the abnormal lung development contributes to a high mortality in these patients. To understand the underlying pathobiology, we compared the proteomic profiles of fetal rat lungs at the alveolar stage (E21) that were either exposed to nitrofen in utero (CDH lungs, n=5) or exposed to vehicle only (non-CDH control lungs, n=5). Pathway analysis of proteomic datasets showed significant enrichment in inflammatory response proteins associated with cytokine signaling and Epstein Barr Virus in nitrofen CDH lungs. Among the 218 significantly altered proteins between CDH and non-CDH control lungs were Tenascin C, CREBBP, LYN, and STAT3. We showed that Tenascin C was decreased around the distal airway branches in nitrofen rat lungs and human CDH lungs, obtained from stillborn fetuses that did not receive pre- or postnatal treatment. In contrast, STAT3 was significantly increased in the airway epithelium of nitrofen lungs at E21. STAT3 inhibition after direct nitrofen exposure to fetal rat lung explants (E14.5) partially rescued the hypoplastic lung phenotype ex vivo by increasing peripheral lung budding. Moreover, we demonstrated that several STAT3-associated cytokines (IL-15, IL-9, andIL-2) are increased in fetal tracheal aspirates of CDH survivors compared with nonsurvivors after fetoscopic endoluminal tracheal occlusion. With our unbiased proteomics approach, we showed for the first time that downstream inflammatory processes are likely involved in the pathogenesis of abnormal lung development in CDH.


Assuntos
Infecções por Vírus Epstein-Barr , Hérnias Diafragmáticas Congênitas , Pneumopatias , Ratos , Humanos , Animais , Tenascina/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Proteômica , Ratos Sprague-Dawley , Herpesvirus Humano 4 , Pulmão , Pneumopatias/etiologia , Modelos Animais de Doenças
8.
Sci Rep ; 12(1): 20837, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460835

RESUMO

Biological sex impacts disease prevalence, severity and response to therapy in asthma, however preclinical studies often use only one sex in murine models. Here, we detail sex-related differences in immune responses using a house dust mite (HDM)-challenge model of acute airway inflammation, in adult mice of two different strains (BALB/c and C57BL/6NJ). Female and male mice were challenged (intranasally) with HDM extract (~ 25 µg) for 2 weeks (N = 10 per group). Increase in serum HDM-specific IgE showed a female bias, which was statistically significant in BALB/c mice. We compared naïve and HDM-challenged mice to define immune responses in the lungs by assessing leukocyte accumulation in the bronchoalveolar lavage fluid (BALF), and profiling the abundance of 29 different cytokines in BALF and lung tissue lysates. Our results demonstrate specific sex-related and strain-dependent differences in airway inflammation. For example, HDM-driven accumulation of neutrophils, eosinophils and macrophages were significantly higher in females compared to males, in BALB/c mice. In contrast, HDM-mediated eosinophil accumulation was higher in males compared to females, in C57BL/6NJ mice. Differences in lung cytokine profiles indicated that HDM drives a T-helper (Th)17-biased response with higher IL-17 levels in female BALB/c mice compared to males, whereas female C57BL/6NJ mice elicit a mixed Th1/Th2-skewed response. Male mice of both strains showed higher levels of specific Th2-skewed cytokines, such as IL-21, IL-25 and IL-9, in response to HDM. Overall, this study details sex dimorphism in HDM-mediated airway inflammation in mice, which will be a valuable resource for preclinical studies in allergic airway inflammation and asthma.


Assuntos
Asma , Pyroglyphidae , Feminino , Masculino , Camundongos , Animais , Alérgenos , Caracteres Sexuais , Camundongos Endogâmicos C57BL , Dermatophagoides pteronyssinus , Inflamação , Camundongos Endogâmicos BALB C , Citocinas
9.
J Inflamm (Lond) ; 19(1): 26, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517803

RESUMO

BACKGROUND: The heterodimer interleukin (IL)-17A/F is elevated in the lungs in chronic respiratory disease such as severe asthma, along with the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Although IL-17A/F and TNF-α are known to functionally cooperate to exacerbate airway inflammation, proteins altered by their interaction in the lungs are not fully elucidated. RESULTS: We used Slow Off-rate Modified Aptamer-based proteomic array to identify proteins that are uniquely and/or synergistically enhanced by concurrent stimulation with IL-17A/F and TNF-α in human bronchial epithelial cells (HBEC). The abundance of 38 proteins was significantly enhanced by the combination of IL-17A/F and TNF-α, compared to either cytokine alone. Four out of seven proteins that were increased > 2-fold were those that promote neutrophil migration; host defence peptides (HDP; Lipocalin-2 (LCN-2) and Elafin) and chemokines (IL-8, GROα). We independently confirmed the synergistic increase of these four proteins by western blots and ELISA. We also functionally confirmed that factors secreted by HBEC stimulated with the combination of IL-17A/F and TNF-α uniquely enhances neutrophil migration. We further showed that PI3K and PKC pathways selectively control IL-17A/F + TNF-α-mediated synergistic production of HDPs LCN-2 and Elafin, but not chemokines IL-8 and GROα. Using a murine model of airway inflammation, we demonstrated enhancement of IL-17A/F, TNF-α, LCN-2 and neutrophil chemokine KC in the lungs, thus corroborating our findings in-vivo. CONCLUSION: This study identifies proteins and signaling mediated by concurrent IL-17A/F and TNF-α exposure in the lungs, relevant to respiratory diseases characterized by chronic inflammation, especially neutrophilic airway inflammation such as severe asthma.

10.
Front Immunol ; 13: 923986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837410

RESUMO

Biological sex influences disease severity, prevalence and response to therapy in allergic asthma. However, allergen-mediated sex-specific changes in lung protein biomarkers remain undefined. Here, we report sex-related differences in specific proteins secreted in the lungs of both mice and humans, in response to inhaled allergens. Female and male BALB/c mice (7-8 weeks) were intranasally challenged with the allergen house dust mite (HDM) for 2 weeks. Bronchoalveolar lavage fluid (BALF) was collected 24 hour after the last HDM challenge from allergen-naïve and HDM-challenged mice (N=10 per group, each sex). In a human study, adult participants were exposed to nebulized (2 min) allergens (based on individual sensitivity), BALF was obtained after 24 hour (N=5 each female and male). The BALF samples were examined in immunoblots for the abundance of 10 proteins shown to increase in response to allergen in both murine and human BALF, selected from proteomics studies. We showed significant sex-bias in allergen-driven increase in five out of the 10 selected proteins. Of these, increase in eosinophil peroxidase (EPX) was significantly higher in females compared to males, in both mice and human BALF. We also showed specific sex-related differences between murine and human samples. For example, allergen-driven increase in S100A8 and S100A9 was significantly higher in BALF of females compared to males in mice, but significantly higher in males compared to females in humans. Overall, this study provides sex-specific protein biomarkers that are enhanced in response to allergen in murine and human lungs, informing and motivating translational research in allergic asthma.


Assuntos
Alérgenos , Asma , Adulto , Alérgenos/efeitos adversos , Animais , Asma/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae , Caracteres Sexuais
11.
Methods Mol Biol ; 2456: 53-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35612734

RESUMO

Mass spectrometry (MS) is a routinely used approach to characterize global protein profile in various biological samples. Here we describe rodent lung tissue homogenization, sample preparation, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for shotgun proteomics.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/métodos , Pulmão , Proteômica/métodos , Roedores
12.
Environ Res ; 209: 112803, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35120890

RESUMO

BACKGROUND: Traffic-related air pollution (TRAP) is a critical risk factor and major contributor to respiratory and cardiovascular disease (CVD). The effects of TRAP beyond the lungs can be related to changes in circulatory proteins. However, such TRAP-mediated changes have not been defined in an unbiased manner using a controlled human model. OBJECTIVE: To detail global protein changes (the proteome) in plasma following exposure to inhaled diesel exhaust (DE), a paradigm of TRAP, using controlled human exposures. METHODS: In one protocol, ex-smokers and never-smokers were exposed to filtered air (FA) and DE (300 µg PM2.5/m3), on order-randomized days, for 2 h. In a second protocol, independent never-smoking participants were exposed to lower concentrations of DE (20, 50 or 150 µg PM2.5/m3) and FA, for 4 h, on order-randomized days. Each exposure was separated by 4 weeks of washout. Plasma samples obtained 24 h post-exposure from ex-smokers (n = 6) were first probed using Slow off-rate modified aptamer proteomic array. Plasma from never-smokers (n = 11) was used for independent assessment of proteins selected from the proteomics study by immunoblotting. RESULTS: Proteomics analyses revealed that DE significantly altered 342 proteins in plasma of ex-smokers (n = 6). The top 20 proteins therein were primarily associated with inflammation and CVD. Plasma from never-smokers (n = 11) was used for independent assessment of 6 proteins, amongst the top 10 proteins increased by DE in the proteomics study, for immunoblotting. The abundance of all six proteins (fractalkine, apolipoproteins (APOB and APOM), IL18R1, MIP-3 and MMP-12) was significantly increased by DE in plasma of these never-smokers. DE-mediated increase was shown to be concentration-dependent for fractalkine, APOB and MMP-12, all biomarkers of atherosclerosis, which correlated with plasma levels of IL-6, a subclinical marker of CVD, in independent participants. CONCLUSION: This investigation details changes in the human plasma proteome due to TRAP. We identify specific atherosclerosis-related proteins that increase concentration-dependently across a range of TRAP levels applicable worldwide.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aterosclerose , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Aterosclerose/induzido quimicamente , Aterosclerose/etiologia , Aterosclerose/metabolismo , Humanos , Proteoma , Proteômica , Distribuição Aleatória , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
13.
J Med Chem ; 64(10): 6696-6705, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33974425

RESUMO

Innate defense regulator (IDR) peptides show promise as immunomodulatory therapeutics. However, there is limited understanding of the relationship of IDR peptide sequence and/or structure with its immunomodulatory activity. We previously reported that an IDR peptide, IDR-1002, reduces airway hyperresponsiveness (AHR) and inflammation in a house dust mite (HDM)-challenged murine model of airway inflammation. Here, we examined the sequence-to-function relationship of IDR-1002 in HDM-challenged mice and human bronchial epithelial cells (HBEC). We demonstrated that the tryptophan (W8) in the central hydrophobic region of IDR-1002 is required for the peptide to (i) suppress the pro-inflammatory cytokine IL-33, and induce anti-inflammatory mediators IL-1RA and stanniocalcin-1 in HBEC, and (ii) reduce IL-33 abundance, and eosinophil and neutrophil infiltration, in the lungs of HDM-challenged mice, without affecting the capacity to improve AHR, suggesting multimodal activity in vivo. Findings from this study can be used to design IDR peptides with targeted impact on immunomodulation and pathophysiology in respiratory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Imunomodulação/efeitos dos fármacos , Triptofano/química , Substituição de Aminoácidos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Asma/tratamento farmacológico , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-33/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos/efeitos dos fármacos , Análise de Componente Principal , Estrutura Secundária de Proteína , Pyroglyphidae/patogenicidade , Triptofano/metabolismo
14.
Arthritis Res Ther ; 23(1): 39, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33494792

RESUMO

OBJECTIVE: Curcumin (CUR), vitamin D3 (D3), and omega-3-fatty acids (O3FA) individually modulate inflammation and pain in arthritis. Although these supplements are widely used, their combinatorial effects have not been defined. In this study, we examined the effects of a D3 and O3FA (VO)-enriched diet in conjunction with a highly bioavailable form of CUR (Cureit/Acumin™) in a collagen-induced arthritis (CIA) murine model. METHODS: Male DBA/1J mice were acclimatized to VO-enriched diet and challenged with bovine collagen II (CII). Bioavailable CUR was administered daily by oral gavage from the onset of CII challenge. Disease severity was determined by monitoring joint thickness and standardized clinical score. Cellular infiltration and cartilage degradation in the joints were assessed by histology, serum cytokines profiled by Meso Scale Discovery multiplex assay, and joint matrix metalloproteinases examined by western blots. RESULTS: CUR by itself significantly decreased disease severity by ~ 60%. Administration of CUR in CIA mice taking a VO-enriched diet decreased disease severity by > 80% and maximally delayed disease onset and progression. Some of the disease-modifying effects was mediated by CUR alone, e.g., suppression of serum anti-collagen antibodies and decrease of cellular infiltration and MMP abundance in the joints of CIA mice. Although CUR alone suppressed inflammatory cytokines in serum of CIA mice, the combination of CUR and VO diet significantly enhanced the suppression (> 2-fold compared to CUR) of TNF, IFN-γ, and MCP-1, all known to be associated with RA pathogenesis. CONCLUSION: This study provides proof-of-concept that the combination of bioavailable CUR, vitamin D3, and O3FA substantially delays the development and severity of CIA. These findings provide a rationale for systematically evaluating these widely available supplements in individuals at risk for developing future RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Curcumina , Animais , Artrite Experimental/tratamento farmacológico , Bovinos , Curcumina/farmacologia , Citocinas , Dieta , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos DBA , Vitamina D , Vitaminas
15.
ACS Omega ; 6(2): 1171-1189, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490776

RESUMO

To capture interplay between biological pathways, we analyzed the proteome from matched lung tissues and bronchoalveolar lavage fluid (BALF) of individual allergen-naïve and house dust mite (HDM)-challenged BALB/c mice, a model of allergic asthma. Unbiased label-free liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis quantified 2675 proteins from tissues and BALF of allergen-naïve and HDM-exposed mice. In comparing the four datasets, we found significantly greater diversity in proteins between lung tissues and BALF than in the changes induced by HDM challenge. The biological pathways enriched after allergen exposure were compartment-dependent. Lung tissues featured innate immune responses and oxidative stress, while BALF most strongly revealed changes in metabolism. We combined lung tissues and BALF proteomes, which principally highlighted oxidation reduction (redox) pathways, a finding influenced chiefly by the lung tissue dataset. Integrating lung and BALF proteomes also uncovered new proteins and biological pathways that may mediate lung tissue and BALF interactions after allergen challenge, for example, B-cell receptor signaling. We demonstrate that enhanced insight is fostered when different biological compartments from the lung are investigated in parallel. Integration of proteomes from lung tissues and BALF compartments reveals new information about protein networks in response to environmental challenge and interaction between intracellular and extracellular processes.

16.
Front Allergy ; 2: 718267, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35387021

RESUMO

Asthma is a heterogeneous respiratory disease characterized by airflow obstruction, bronchial hyperresponsiveness and airway inflammation. Approximately 10% of asthma patients suffer from uncontrolled severe asthma (SA). A major difference between patients with SA from those with mild-to-moderate asthma is the resistance to common glucocorticoid treatments. Thus, steroid-unresponsive uncontrolled asthma is a hallmark of SA. An impediment in the development of new therapies for SA is a limited understanding of the range of immune responses and molecular networks that can contribute to the disease process. Typically SA is thought to be characterized by a Th2-low and Th17-high immunophenotype, accompanied by neutrophilic airway inflammation. However, Th2-mediated eosinophilic inflammation, as well as mixed Th1/Th17-mediated inflammation, is also described in SA. Thus, existing studies indicate that the immunophenotype of SA is diverse. This review attempts to summarize the interplay of different immune mediators and related mechanisms that are associated with airway inflammation and the immunobiology of SA.

17.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33158897

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that undergoes swarming motility in response to semisolid conditions with amino acids as a nitrogen source. With a genome encoding hundreds of potential intergenic small RNAs (sRNAs), P. aeruginosa can easily adapt to different conditions and stresses. We previously identified 20 sRNAs that were differentially expressed (DE) under swarming conditions. Here, these sRNAs were overexpressed in strain PAO1 and were subjected to an array of phenotypic screens. Overexpression of the PrrH sRNA resulted in decreased swimming motility, whereas a ΔprrH mutant had decreased cytotoxicity and increased pyoverdine production. Overexpression of the previously uncharacterized PA2952.1 sRNA resulted in decreased swarming and swimming motilities, increased gentamicin and tobramycin resistance under swarming conditions, and increased trimethoprim susceptibility. Transcriptome sequencing (RNA-Seq) and proteomic analysis were performed on the wild type (WT) overexpressing PA2952.1 compared to the empty vector control under swarming conditions, and these revealed the differential expression (absolute fold change [FC] ≥ 1.5) of 784 genes and the differential abundance (absolute FC ≥ 1.25) of 59 proteins. Among these were found 73 transcriptional regulators, two-component systems, and sigma and anti-sigma factors. Downstream effectors included downregulated pilus and flagellar genes, the upregulated efflux pump MexGHI-OpmD, and the upregulated arn operon. Genes involved in iron and zinc uptake were generally upregulated, and certain pyoverdine genes were upregulated. Overall, the sRNAs PA2952.1 and PrrH appeared to be involved in regulating virulence-related programs in P. aeruginosa, including iron acquisition and motility.IMPORTANCE Due to the rising incidence of multidrug-resistant (MDR) strains and the difficulty of eliminating P. aeruginosa infections, it is important to understand the regulatory mechanisms that allow this bacterium to adapt to and thrive under a variety of conditions. Small RNAs (sRNAs) are one regulatory mechanism that allows bacteria to change the amount of protein synthesized. In this study, we overexpressed 20 different sRNAs in order to investigate how this might affect different bacterial behaviors. We found that one of the sRNAs, PrrH, played a role in swimming motility and virulence phenotypes, indicating a potentially important role in clinical infections. Another sRNA, PA2952.1, affected other clinically relevant phenotypes, including motility and antibiotic resistance. RNA-Seq and proteomics of the strain overexpressing PA2952.1 revealed the differential expression of 784 genes and 59 proteins, with a total of 73 regulatory factors. This substantial dysregulation indicates an important role for the sRNA PA2952.1.


Assuntos
Ferro/metabolismo , Pseudomonas aeruginosa/genética , RNA Bacteriano/fisiologia , Virulência , Proteínas de Bactérias/genética , Linhagem Celular , Sobrevivência Celular , Genes Bacterianos , Humanos , Proteômica , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/fisiologia , Zinco/metabolismo
18.
Front Immunol ; 11: 1932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973796

RESUMO

Cationic host defense peptides (CHDP) are immunomodulatory molecules that control infections and contribute to immune homeostasis. CHDP such as cathelicidin and calprotectin expression is altered in the arthritic synovium, and in the lungs of asthma and COPD patients. Recent studies suggest a link between airway inflammation and the immunopathology of arthritis. Therefore, in this study we compared the abundance of mouse cathelicidin (CRAMP), defensins, and calprotectin subunits (S100A8 and S100A9) in murine models of collagen-induced arthritis (CIA) and allergen house dust mite (HDM)-challenged airway inflammation. CRAMP, S100A8, and S100A9 abundance were significantly elevated in the joint tissues of CIA mice, whereas these were decreased in the lung tissues of HDM-challenged mice, compared to naïve. We further compared the effects of administration of two different synthetic immunomodulatory peptides, IG-19 and IDR-1002, on cathelicidin and calprotectin abundance in the two models. Administration of IG-19, which controls disease progression and inflammation in CIA mice, significantly decreased CRAMP, S100A8, and S100A9 levels to baseline in the joints of the CIA mice, which correlated with the decrease in cellular influx in the joints. However, administration of IDR-1002, which suppresses HDM-induced airway inflammation, did not prevent the decrease in the levels of cathelicidin and calprotectin in the lungs of HDM-challenged mice. Cathelicidin and calprotectin levels did not correlate with leukocyte accumulation in the lungs of the HDM-challenged mice. Results of this study suggest that endogenous cathelicidin and calprotectin abundance are disparately altered, and may be differentially regulated, within local tissues in airway inflammation compared to arthritis.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Artrite Experimental/metabolismo , Asma/metabolismo , Articulações/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Leucócitos/metabolismo , Pulmão/metabolismo , Alérgenos , Animais , Antígenos de Dermatophagoides , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/imunologia , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Colágeno Tipo II , Feminino , Fatores Imunológicos/farmacologia , Articulações/efeitos dos fármacos , Articulações/imunologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Catelicidinas
19.
Biochim Biophys Acta Mol Basis Dis ; 1866(12): 165950, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841733

RESUMO

IL-33 induces airway inflammation and hyper-responsiveness in respiratory diseases. Although defined as a therapeutic target, there are limited studies that have comprehensively investigated IL-33-mediated responses in the lungs in vivo. In this study, we characterized immunological and physiological responses induced by intranasal IL-33 challenge, in a mouse model. We identified specific cytokines, IL-4, IL-5, IL-6, IL-10, IP-10 and MIP1-α, that are increased in bronchoalveolar lavage and lung tissues by IL-33. Using transcriptomics (RNA-Seq) we demonstrated that 2279 transcripts were up-regulated and 1378 downregulated (≥ 2-fold, p < 0.01) in lung tissues, in response to IL-33. Bioinformatic interrogation of the RNA-Seq data was used to predict biological pathways and upstream regulators involved in IL-33-mediated responses. We showed that the mRNA and protein of STAT4, a predicted upstream regulator of IL-33-induced transcripts, was significantly enhanced in the lungs following IL-33 challenge. Overall, this study provides specific IL-33-induced molecular targets and endpoints that can be used as a resource for in vivo studies, e.g. in preclinical murine models examining novel interventions to target downstream effects of IL-33.


Assuntos
Interleucina-33/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Modelos Animais , Transcriptoma , Administração Intranasal , Animais , Feminino , Interleucina-33/administração & dosagem , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , RNA-Seq
20.
mSystems ; 5(3)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430407

RESUMO

Pseudomonas aeruginosa is a motile species that initiates swarming motility in response to specific environmental cues, i.e., a semisolid surface with amino acids as a nitrogen source (relevant to the human lung). Swarming is an intricately regulated process, but to date posttranscriptional regulation has not been extensively investigated. Small noncoding RNAs (sRNAs) are hypothesized to play posttranscriptional regulatory roles, largely through suppression of translation, and we previously demonstrated 20 sRNA species that were dysregulated under swarming conditions. One of these, sRNA PA0805.1 (which was 5-fold upregulated under swarming conditions), when cloned, transformed into wild-type (WT) PAO1, and overexpressed, led to broad phenotypic changes, including reduced swarming, swimming, and twitching motilities, as well as increased adherence, cytotoxicity, and tobramycin resistance. A ΔPA0805.1 deletion mutant was more susceptible to tobramycin than the WT under swarming conditions. The strain overexpressing PA0805.1 was compared to the empty-vector strain by transcriptome sequencing (RNA-Seq) and proteomics under swarming conditions to determine sRNA targets. Broad transcriptional and proteomic profiles showed 1,121 differentially expressed genes and 258 proteins with significantly different abundance. Importantly, these included 106 transcriptional regulators, two-component regulatory systems, and sigma and anti-sigma factors. Downstream of these regulators were found downregulated type IV pilus genes, many upregulated adherence and virulence factors, and two multidrug efflux systems, mexXY and mexGHI-opmD Therefore, the sRNA PA0805.1 appears to be a global regulator that influences diverse bacterial lifestyles, most likely through a regulatory cascade.IMPORTANCE P. aeruginosa is an opportunistic pathogen of humans. With roughly 10% of its genes encoding transcriptional regulators, and hundreds of small noncoding RNAs (sRNAs) interspersed throughout the genome, P. aeruginosa is able to fine-tune its response to adapt and survive in the host and resist antimicrobial agents. Understanding mechanisms of genetic regulation is therefore crucial to combat pathogenesis. The previously uncharacterized sRNA PA0805.1 was overexpressed in P. aeruginosa strain PAO1, resulting in decreased motility, increased adherence, cytotoxicity, and tobramycin resistance. In contrast, a ΔPA0805.1 deletion mutant had increased susceptibility to tobramycin under swarming conditions. Omic approaches uncovered 1,121 transcriptomic and 258 proteomic changes in the overexpression strain compared with the empty-vector strain, which included 106 regulatory factors. Downstream of these regulators were upregulated adherence factors, multidrug efflux systems, and virulence factors in both transcriptomics and proteomics. This study provides insights into the role of the sRNA PA0805.1 in modulating bacterial adaptations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...