Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 250: 126218, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572804

RESUMO

Despite significant advancements made in cardiovascular stents, restenosis, thrombosis, biocompatibility, and clinical complications remain a matter of concern. Herein, we report a biodegradable Mg alloy stent with a dual effect of the drug (Paclitaxel) and growth factor (VEGF) release. To mitigate the fast degradation of Mg alloy, inorganic and organic coatings were formed on the alloy surface. The optimized hierarchal sequence of the coating was the first layer consisting of magnesium fluoride, followed by poly(l-lactide) and hydroxyapatite coating, and finally sealed by a polycaprolactone layer (MgC). PLLA and HAp were used to increase the adhesion strength and biocompatibility of the coating. Paclitaxel and VEGF were loaded in the final PCL layer (Mg-C/PTX-VEGF). As compared to bare Mg alloy (28 % weight loss), our MgC system showed (3.1 % weight loss) successful decrease in the degradation rate. Further, the in vitro biocompatibility illustrated the highly biocompatible nature of our drug and growth factor-loaded system. The in vivo results displayed that the drug loading decreased the inflammation and neointimal hyperplasia as indicated by the α-SMA and CD-68 antibody staining. The growth factor helped in the endothelialization which was established by the FLKI and ICAM antibody staining of the tissue.

2.
Mater Today Bio ; 18: 100533, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36619205

RESUMO

Magnesium and its alloys are widely applied biomaterials due to their biodegradability and biocompatibility. However, rapid degradation and hydrogen gas evolution hinder its applicability on a commercial scale. In this study, we developed an Mg alloy bone plate for bone remodeling and support after a fracture. We further coated the Mg alloy plate with Sr-D-Ca-P (Sr dopped Ca-P coating) and Sr-D-Ca-P/PLLA-HAp to evaluate and compare their biodegradability and biocompatibility in both in vitro and in vivo experiments. Chemical immersion and dip coating were employed for the formation of Sr-D-Ca-P and PLLA-HAp layers, respectively. In vitro evaluation depicted that both coatings delayed the degradation process and exhibited excellent biocompatibility. MC3T3-E1cells proliferation and osteogenic markers expression were also promoted. In vivo results showed that both Sr-D-Ca-P and Sr-D-Ca-P/PLLA-HAp coated bone plates had slower degradation rate as compared to Mg alloy. Remarkable bone remodeling was observed around the Sr-D-Ca-P/PLLA-HAp coated bone plate than bare Mg alloy and Sr-D-Ca-P coated bone plate. These results suggest that Sr-D-Ca-P/PLLA-HAp coated Mg alloy bone plate with lower degradation and enhanced biocompatibility can be applied as an orthopedic implant.

3.
J Appl Biomater Funct Mater ; 16(3): 126-136, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29607729

RESUMO

BACKGROUND: Magnesium (Mg)-based alloys are considered to be promising materials for implant application due to their excellent biocompatibility, biodegradability, and mechanical properties close to bone. However, low corrosion resistance and fast degradation are limiting their application. Mg-Ca alloys have huge potential owing to a similar density to bone, good corrosion resistance, and as Mg is essential for Ca incorporation into bone. The objective of the present work is to determine the in vitro degradation and in vivo performance of binary Mg- xCa alloy ( x = 0.5 or 5.0 wt%) to assess its usability for degradable implant applications. METHODS: Microstructural evolutions for Mg- xCa alloys were characterized by optical, SEM, EDX, and XRD. In vitro degradation tests were conducted via immersion test in phosphate buffer saline solution. In vivo performance in terms of interface, biocompatibility, and biodegradability of Mg- xCa alloys was examined by implanting samples into rabbit femoral condyle for 2 and 4 weeks. RESULTS: Microstructural results showed the enhancement in intermetallic Mg2Ca phase with increase in Ca content. Immersion tests revealed that the dissolution rate varies linearly, with Ca content exhibiting more hydrogen gas evolution, increased pH, and higher degradation for Mg-5.0Ca alloy. In vivo studies showed good biocompatibility with enhanced bone formation for Mg-0.5Ca after 4 weeks of implantation compared with Mg-5.0Ca alloy. Higher initial corrosion rate with prolonged inflammation and rapid degradation was noticed in Mg-5.0Ca compared with Mg-0.5Ca alloy. CONCLUSIONS: The results suggest that Mg-0.5Ca alloy could be used as a temporary biodegradable implant material for clinical applications owing to its controlled in vivo degradation, reduced inflammation, and high bone-formation capability.


Assuntos
Implantes Absorvíveis , Ligas/química , Materiais Biocompatíveis/química , Ligas/metabolismo , Animais , Materiais Biocompatíveis/metabolismo , Cálcio/química , Corrosão , Fêmur/diagnóstico por imagem , Fêmur/patologia , Hidrogênio/química , Concentração de Íons de Hidrogênio , Magnésio/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Coelhos , Espectrometria por Raios X , Difração de Raios X , Microtomografia por Raio-X
4.
PLoS One ; 13(4): e0193927, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29608572

RESUMO

The present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique. Morphology, elements profile, phase structure, roughness, mechanical properties, invitro corrosion, and biocompatibility of duplex MgF2/PCL coating were then characterized and compared to those of fluoride coated and uncoated Mg samples. The invivo degradation behavior and biocompatibility of duplex MgF2/PCL coating with respect to ZK60 Mg alloy were also studied using rabbit model for 2 weeks. SEM and TEM analysis showed that the duplex coating was uniform and comprised of porous PCL film (~3.3 µm) as upper layer with compact MgF2 (~2.2 µm) as inner layer. No significant change in microhardness was found on duplex coating compared with uncoated ZK60 Mg alloy. The duplex coating showed improved invitro corrosion resistance than single layered MgF2 or uncoated alloy samples. The duplex coating also resulted in better cell viability, cell adhesion, and cell proliferation compared to fluoride coated or uncoated alloy. Preliminary invivo studies indicated that duplex MgF2/PCL coating reduced the degradation rate of ZK60 Mg alloy and exhibited good biocompatibility. These results suggested that duplex MgF2/PCL coating on magnesium alloy might have great potential for orthopedic applications.


Assuntos
Ligas/química , Materiais Revestidos Biocompatíveis/química , Fluoretos/química , Compostos de Magnésio/química , Poliésteres/química , Animais , Adesão Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Teste de Materiais , Osteoblastos/citologia , Coelhos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...