Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 865, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195722

RESUMO

The 2020 summer monsoon season in East Asia was unusually long and intense, and the Madden-Julian Oscillation (MJO) has been proposed as an underlying reason. This study analyzes the role of the MJO in the 2020 East Asian precipitation forecasts of the subseasonal-to-seasonal (S2S) model. The S2S models underestimated the cumulative precipitation over East Asia, and the models with good forecast performance yielded a distinct precipitation band over East Asia and a western pacific subtropical high (WPSH) during the analysis period. East Asian precipitation forecast performance was more closely related to the location of the center than the strength of the WPSH, with precipitation increasing with a decrease in the latitude at the center. MJO Phases 1-3 activation intensified the WPSH and shifted the center of WPSH to lower latitudes. Our results confirm that the strong East Asian precipitation in summer 2020 was partly due to changes in the characteristics of the MJO and indicate the importance of accurately estimating the MJO-WPSH coupling for reliable East Asian precipitation forecasts.

2.
Sci Total Environ ; 901: 166098, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37582449

RESUMO

It is important to examine the physical processes that regulate current CO2 concentrations in East Asia to understand the global carbon cycle. To do this, we begin by defining the difference between East Asian and global CO2 concentrations (East Asian CO2 concentration minus global CO2 concentration), which is referred to as East Asian local CO2 concentration (i.e., EA_LCO2). Then, we examine the physical processes associated with the variability of EA_LCO2 during boreal spring (March-April-May) on the slow and interannual timescales. Our results indicate that there are two key factors leading to elevated CO2 concentrations in East Asia relative to the global mean during boreal spring; one is higher emissions in East Asia, which mostly explains the increasing in EA_LCO2 on the slow timescales. The other is a cool sea surface temperature (SST) in the eastern tropical Pacific (La-Nina-like SST), which is associated with an interannual higher CO2 concentration in East Asia than the global mean. Enhanced convective activity in the western tropical Pacific, which is associated with a La-Nina-like SST forcing, induces low-pressure circulation in the western North Pacific with northerly winds, leading to suppressed precipitation and cool surface temperature in East Asia. Subsequently, those suppress vegetation growth as well as gross primary product, resulting in relatively high CO2 concentrations in East Asia compared to the global mean.

3.
Sci Rep ; 11(1): 12911, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145363

RESUMO

The negative impact of extreme high-temperature days (EHDs) on people's livelihood has increased over the past decades. Therefore, an improved understanding of the fundamental mechanisms of EHDs is imperative to mitigate this impact. Herein, we classify the large-scale atmospheric circulation patterns associated with EHDs that occurred in South Korea from 1982 to 2018 using a self-organizing map (SOM) and investigate the dynamic mechanism for each cluster pattern through composite analysis. A common feature of all SOM clusters is the positive geopotential height (GPH) anomaly over the Korean Peninsula, which provides favorable conditions for EHDs through adiabatic warming caused by anomalous downward motion. Results show that Cluster 1 (C1) is related to the eastward-propagating wave train in the mid-latitude Northern Hemisphere, while Cluster 2 (C2) and 3 (C3) are influenced by a northward-propagating wave train forced by enhanced convection in the subtropical western North Pacific (WNP). Compared to C2, C3 exhibits strong and eastward-extended enhanced convection over the subtropical WNP, which generates an anomalous high-pressure system over the southern part of the Kamchatka Peninsula, reinforcing EHDs via atmospheric blocking. Our results can contribute to the understanding of East Asia climate variability because wave trains influence the climate dynamics of this region.

4.
Materials (Basel) ; 14(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802544

RESUMO

This study investigates the potential of propolis-embedded zeolite nanocomposites for dental implant application. Propolis-embedded zeolite nanocomposites were fabricated by complexation of propolis and zeolites. Then, they were pelleted with Poly(L-lactide) (PLA)/poly(ε-caprolactone) (PCL) polymer for the fabrication of a dental implant. The chemical properties of propolis were not changed during the fabrication of propolis-embedded zeolite nanocomposites in attenuated total reflection-fourier transform infra-red (ATR FT-IR) spectroscopy measurements. Propolis was continuously released from propolis-embedded zeolite nanocomposites over one month. PLA/PCL pellets containing propolis-embedded zeolite nanocomposites showed longer sustained release behavior compared to propolis-embedded zeolite nanocomposites. Propolis-embedded zeolite nanocomposite powder showed similar antibacterial activity against C. albicans in an agar plate and formed an inhibition zone as well as chlorohexidine (CHX) powder. Eluted propolis solution from PLA/PCL pellets also maintained antibacterial activity as well as CHX solution. Furthermore, eluted propolis solution from PLA/PCL pellets showed significant antibacterial efficacy against C. albicans, S. mutans and S. sobrinus. Dental implants fabricated from PLA/PCl polymer and propolis-embedded zeolite nanocomposites also have antibacterial efficacy and negligible cytotoxicity against normal cells. We suggest that PLA/PCl pellets containing propolis-embedded zeolite nanocomposites are promising candidates for dental implants.

5.
J Nanosci Nanotechnol ; 20(9): 5676-5679, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331157

RESUMO

In this study, the wear behavior of glazed zirconia was investigated to the antagonist with human enamel after simulated mastication. Twenty Y-TZP specimens were divided into 4 groups: untreated zirconia (Z), glazed zirconia with IPS e.max Ceram (GZE), glazed zirconia with VITA AKZENT® Plus (GZV), and glazed zirconia with glass (GZG). Glazing glass was mainly composed of SiO2, B2O3, Al2O3, Na2O and K2O (nearly 91 wt%). The surface roughness of the specimens was evaluated using roughness profiler. The maxillary premolar teeth were selected as the antagonist. The wear of human enamel against human enamel was used as a control. Five-disc specimens per group were subjected to chewing stimulation CS-4 (SD Mechatronic GmbH, Germany) for 240,000 cycles against human enamel. The wear loss of antagonistic teeth was calculated using a three-dimensional profiling system and the volume loss of the tooth was scanned using a 3D scanner. 3D data obtained before and after testing were overlapped using 3D software (Dentacian Software, EZplant, Korea). The wear loss of glazed zirconia GZE, GZV and GZG groups showed significantly lower than that of human enamel. Whereas, the zirconia (Z) group exhibits significantly lower volume loss than glazed zirconia and enamel. These results show that the wear of the glazing glass is comparable to other commercial glazing materials. Glazing materials are both more susceptible to wear the antagonist relative to zirconia.


Assuntos
Dióxido de Silício , Zircônio , Esmalte Dentário , Humanos , Teste de Materiais , Propriedades de Superfície
6.
J Nanosci Nanotechnol ; 20(9): 5680-5682, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331158

RESUMO

Various attempts to modify the surface of dental implants have been made in order to improve the adhesion of osteocytes. Plasma treatment on dental implants has been suggested to improve osseointegration. This study examined the effect on cell viability with the passage of time after atmospheric plasma treatment. An atmospheric plasma generator (PGS-200 Plasma generator, Expantech Co., Korea) was used and the gas was mixed with the Ar2(99%)/O2(1%) composition and applied to the specimens. The passage of time was set to 7 immediately after treatment, after 30 minutes of treatment, after 60 minutes of treatment, after 90 minutes of treatment, after 24 hours of treatment, and after 48 hours of treatment. Surface property change with the passage of time after plasma treatment were confirmed by FE-SEM, surface roughness and X-ray photoelectron spectroscopy. Cell viability was evaluated by the WST-8 assay. The data were analyzed statistically using a 1-way ANOVA and Tukey's multiple comparisons test (α = .05). It was confirmed that the chemical composition of the surface changes as the passage of time increases after plasma treatment. The viability of L-929 cells was the highest immediately after plasma treatment, and cell viability decreased with increasing the passage of time. As a result of this study, it was confirmed that passage of time is a very important factor for the plasma treated surface.

7.
J Nanosci Nanotechnol ; 20(9): 5683-5685, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331159

RESUMO

Various surface treatments on zirconia have been reported for dental porcelain veneer. However, it has not been determined which of these treatments provide the highest bond strength. The purpose of this study is to compare the effect of airborne particle abrasion and atmospheric pressure plasma treatment on the shear bond strength between zirconia and dental porcelain veneer. The groups were divided into four groups according to the surface treatment method: the control group, the atmospheric pressure plasma treated group (group P), the airborne particle abrasion group (group A), the atmospheric pressure plasma treated group after the airborne particle abrasion (group AP). Atmospheric pressure plasma was applied on the specimens using a plasma generator (Plasma JET, POLYBIOTECH Co. Ltd., Gwangju, Korea) and airborne-particle abraded with 110 µm. The characteristics of surface treated zirconia were analyzed by 3D-OP, XRD, XPS and contact angle. The shear bond strength was tested using a universal testing machine. The shear bond strength of group P was significantly increased compared to that of the control group (P < 0.05). The shear bond strength of group AP was significantly increased as compared to group A (P < 0.05). There was no significant difference between the group P and group A (P > 0.05). As a result of this study, the atmospheric pressure plasma treatment showed significantly higher shear bond strength than control group, but similar to the airborne particle abrasion, and the atmospheric pressure plasma treatment after the airborne particle abrasion provided the highest shear bond strength. This study demonstrated that application atmospheric pressure plasma treatment on zirconia may be useful for increasing bond strength between zirconia and dental porcelain veneer.


Assuntos
Colagem Dentária , Porcelana Dentária , Pressão Atmosférica , Cerâmica , Teste de Materiais , Microscopia Eletrônica de Varredura , Resistência ao Cisalhamento , Propriedades de Superfície , Zircônio
8.
J Nanosci Nanotechnol ; 20(9): 5742-5745, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32331171

RESUMO

Periimplantitis is an inflammation similar to periodontitis, and is caused by biofilms formed on the surface of dental implants. Application of plasma on biomaterials has been reported to decrease the initial adhesion of microorganism by causing chemical changes without changing the surface morphology. The purpose of this study is to evaluate the effect of inhibition of biofilm formation on the elapsed time after plasma treatment. Non thermal plasma generator (PGS-200 Plasma generator, Expantech Co., Korea) was applied to the specimens. The elapsed time in the atmosphere was set to 5 immediately after treatment, after 30 minutes of treatment, after 60 minutes of treatment, after 90 minutes of treatment. Surface property change with the elapsed time in the atmosphere after plasma treatment were confirmed by X-ray photoelectron spectroscopy and contact angle. Inhibition of biofilm formation was evaluated by the fluorescent nucleic acid staining. It was confirmed that the chemical composition and bonding state of the surface changes as the elapsed time in the atmosphere increases after plasma treatment. The adhesion of Porphyromonas gingivalis was the lowest immediately after plasma treatment, and increased again with increasing elapsed time in the atmosphere after plasma treatment. As a result of this study, it was confirmed that elapsed time in the atmosphere is a very important factor for inhibition of biofilm formation.


Assuntos
Nanotubos , Titânio , Atmosfera , Biofilmes , Propriedades de Superfície
9.
J Nanosci Nanotechnol ; 19(2): 1035-1037, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360195

RESUMO

The aim of this study was to evaluate the antibacterial activity against Streptococcus mutans and fibroblast viability of zirconia coated with glass ceramic powder containing Ag and F nanoparticles. Specimens were divided into eight groups depending on the glass ceramic powders: 5, 10, 15, 20 wt% of NaF and Ag, respectively. Adhesion of Streptococcus mutans on glass-coated zirconia surface was evaluated by antimicrobial test. Fibroblast viability was examined by WST-8 assay. In result, the bacterial activity was reduced by 11.8%, 15.4% in Ag 10 wt% and 20 wt% groups. When 5~15 wt% of NaF was added, bacterial counts decreased to 4.2~65.4%, and when 20 wt% of NaF was added, the number of bacteria increased by 29.4%. Regardless of Ag and NaF content, all zirconia specimens showed cell viability above 70%. Within the limitations of this study, zirconia coated with glass ceramics powder containing Ag and NaF was found to reduce the adhesion of Streptococcus mutans but had no influence on osteoblast activation.


Assuntos
Nanopartículas , Prata , Antibacterianos/farmacologia , Sobrevivência Celular , Cerâmica/farmacologia , Fibroblastos , Teste de Materiais , Prata/farmacologia , Propriedades de Superfície , Zircônio/farmacologia
10.
Heliyon ; 4(1): e00515, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29560433

RESUMO

Recently, the surface ozone concentration in the Korean peninsula has been increasing more rapidly than in the past, and seasonal changes are appearing such as increases in the number of ozone alerts in springtime. We examined changes in the timing of annual maximum South Korean O3 levels by fitting a sine function to data from 54 air-quality monitoring sites over a 10-year period (2005-2014). The analytical results show that the date of maximum ozone concentration at 23 points in the last 10 years has been advanced by about 2.1 days per year (E-sites), while the remaining 31 points have been delayed by about 2.5 days per year (L-sites). We attribute these differences to seasonal O3 changes: E-sites show a larger increase in O3 level in March-April (MA) than in June-July (JJ), while L-sites show a larger increase in JJ than in MA. Furthermore, these shifts are significantly larger in magnitude than those reported for Europe and North America. We also examined one possible reason for these seasonal differences: the relationship between O3 and precursors such as NO2 and CO. E-sites showed a rapid decrease in NO2 (NO) concentration in MA over the last decade. As a result, the ozone concentration at E-sites seems to have increased due to the absence of ozone destruction by NOx titration in early spring. In L-Sites, the concentrations of ozone precursors such as NO2 and CO in JJ showed a smaller decrease than those at other sites. Therefore, in L-sites, relatively large amounts of ozone precursors were distributed in JJ, implying that more ozone was generated. We suggest that shifts in the South Korean O3 seasonal cycle are due to changes in early spring and summer NO2 (NO) and CO levels; this should be tested further by modeling studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...