Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(7): 11218-11230, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34143611

RESUMO

Oxygen-based electrocatalysis is an integral aspect of a clean and sustainable energy conversion/storage system. The development of economic bifunctional electrocatalysts with high activity and durability during reversible reactions remains a great challenge. The tailored porous structure and separately presented active sites for oxygen reduction and oxygen evolution reactions (ORR and OER) without mutual interference are most crucial for achieving desired bifunctional catalysts. Here, we report a hybrid composed of sheath-core cobalt oxynitride (CoOx@CoNy) nanorods grown perpendicularly on N-doped carbon nanofiber (NCNF). The brush-like CoOx@CoNy nanorods, composed of metallic Co4N cores and oxidized surfaces, exhibit excellent OER activity (E = 1.69 V at 10 mA cm-2) in an alkaline medium. Although pristine NCNF or CoOx@CoNy alone had poor catalytic activity in the ORR, the hybrid showed dramatically enhanced ORR performance (E = 0.78 V at -3 mA cm-2). The experimental results coupled with a density functional theory (DFT) simulation confirmed that the broad surface area of the CoOx@CoNy nanorods with an oxidized skin layer boosts the catalytic OER, while the facile adsorption of ORR intermediates and a rapid interfacial charge transfer occur at the interface between the CoOx@CoNy nanorods and the electrically conductive NCNF. Furthermore, it was found that the independent catalytic active sites in the CoOx@CoNy/NCNF catalyst are continuously regenerated and sustained without mutual interference during the round-trip ORR/OER, affording stable operation of Zn-air batteries.

2.
ACS Nano ; 13(11): 12500-12510, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31584256

RESUMO

Stretchability and areal coverage of active devices are critical design considerations of stretchable or wearable photovoltaics and photodetections where high areal coverages are required. However, simultaneously maximizing both properties in conventional island-bridge structures through traditional two-dimensional manufacturing processes is difficult due to their inherent trade-offs. Here, a 3D printer-based strategy to achieve extreme system stretchability and high areal coverage through combining fused deposition modeling (FDM) and flexible conductive nanocomposites is reported. Distinguished from typical approaches of using conductive filaments for FDM which have a flexibility dilemma and conductivity trade-offs, the proposed axiomatic approach to embed a two-dimensional silver nanowire percolation network into the surfaces of flexible 3D printed structures offers sufficient conductivity and deformability as well as additional benefits of electrical junction enhancement and encapsulation of silver nanowires. Kirigami/origami-pattern-guided three-dimensional arrangements of encapsulated interconnections provide efficient control over stretchability and areal coverage. The suggested process enables a perovskite solar module with an initial areal coverage of ∼97% to be electrically and mechanically reversible with 400% system stretchability and 25 000% interconnect stretchability under the 1000 cycle test, by folding down or hiding the origami-applied interconnects under the islands. This 3D printing strategy of potentially low cost, large size capabilities, and high speed is promising for highly flexible future energy conversion applications.

3.
J Nanosci Nanotechnol ; 13(9): 6312-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24205651

RESUMO

In this research, we will present Al doped ZnO thin films for transparent conducting oxide applications. Aluminum doped zinc oxide (AZO) thin films have been deposited on the glass substrates by sol-gel spin-coating method using zinc acetate dehydrate (Zn(CH3COO)2 2H2O) and aluminum chloride hexahydrate (AlCl3 x 6H2O) as cation sources. In this study, we investigated the effects of near infrared ray (NIR) annealing on the structural, optical and electrical characteristics of the AZO thin films. The experimental results showed that AZO thin films have a hexagonal wurtzite crystal structure and had a good transmittance higher than 85% within the visible wavelength region. It was also found that the additional energy of NIR helps to improve the electrical properties of Al doped ZnO transparent conducting oxides.

4.
Nanoscale Res Lett ; 7(1): 11, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22222148

RESUMO

Ga-doped ZnO [GZO] thin films were employed for the transparent electrodes in dye-sensitized solar cells [DSSCs]. The electrical property of the deposited GZO films was as good as that of commercially used fluorine-doped tin oxide [FTO]. In order to protect the GZO and enhance the photovoltaic properties, a TiO2 blocking layer was deposited on the GZO surface. Then, TiO2 nanoparticles were coated on the blocking layer, and dye was attached for the fabrication of DSSCs. The fabricated DSSCs with the GZO/TiO2 glasses showed an enhanced conversion efficiency of 4.02% compared to the devices with the normal GZO glasses (3.36%). Furthermore, they showed better characteristics even than those using the FTO glasses, which can be attributed to the reduced charge recombination and series resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...