Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e15031, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37095920

RESUMO

Yersinia enterocolitica is occasionally detected in kimchi, a traditional food prepared from fermented vegetables. Changes in growth properties of Y. enterocolitica during kimchi fermentation are largely unknown. We investigated the viability of Y. enterocolitica during the fermentation of vegan and non-vegan kimchi at different temperatures. Changes in Y. enterocolitica population, pH, and titratable acidity were measured for 24 days. In a suspension test with kimchi juice, populations of three Y. enterocolitica strains were above 3.30 log10 CFU/mL at pH > 5 for 7 days. Yersinia enterocolitica counts in vegan kimchi were considerably reduced at 0 °C and 6 °C. During fermentation at 6 °C, Y. enterocolitica populations in non-vegan kimchi and vegan kimchi were not detected starting from days 14 and 10, respectively. In kimchi samples stored at 0 °C and 6 °C, Y. enterocolitica survival correlated with pH changes during fermentation; in samples stored for up to 24 days, Y. enterocolitica was not detected. According to the k max values from the "log-linear with shoulder and tail" model, Y. enterocolitica was more sensitive to vegan kimchi fermentation than to non-vegan kimchi fermentation. Our findings provide an important basis for ensuring the safe production of kimchi without Y. enterocolitica contamination. Further research is necessary to elucidate the mechanism of Y. enterocolitica inactivation and the major bacterial and physicochemical factors involved in kimchi fermentation.

2.
ACS Omega ; 6(30): 19427-19434, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34368530

RESUMO

Toxic elements (Cd, Pb, and As) accumulate into the environment by industrialization and natural phenomena and then pass to organisms. Analysis of toxic elements in food must be accurately carried out on a regular basis so as to avoid any adverse impact. Salted foods are difficult samples and accurate analysis of As is not easy due to salt interference. In this study, analysis of As was carried without influence of salts in three types of salted foods via an analytical method, which was validated using spiking recovery experiments and by analyzing certified reference materials. As a result, toxic elements were detected in all samples but none of these exceeded the World Health Organization recommended limits. Among the As species, arsenobetaine (AsB) was the most abundant, while inorganic As was below the detection limit in all samples. All the analyzed salted food samples appeared to be safe for consumption. In addition, the analysis of sea shrimp, freshwater shrimp, and seawater verified As bioaccumulation in these organisms from the environment.

3.
Foods ; 10(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34441711

RESUMO

The factors of brine time, concentration, and temperature, affect the high-quality production of brined cabbage used in Kimchi. Although changes in Kimchi cabbage quality depending on brine time and concentration have been reported, changes in brine temperature have not been explored. Here, we optimized the brine process considering specific conditions of temperature (15-25 °C), concentration (10-14%), and osmosis duration (14-18 h) affecting the characteristics such as pH, titratable acidity, soluble solid content, glucose, fructose, and lactic acid bacteria and mass transport (salt gain, water loss, and weight reduction). The optimal parameters were determined using multivariate statistical analysis using the Box-Behnken design combined with response surface methodology. For each response as qualitative characteristics, second order polynomial models were developed using multiple regression analysis. Analysis of variance was performed to check the adequacy and accuracy of the fitted models. The brine temperature and concentration affected salt gain and water loss; the optimal brining temperature, concentration, and time were 19.17 °C, 10.53%, and 15.38 h, respectively. Statistical regression analysis indicated that standardized brined cabbage can be produced efficiently using a brining tank at controllable temperature.

4.
J Food Sci ; 85(12): 4170-4179, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33190231

RESUMO

Cabbage kimchi, a popular side dish in Korean cuisine, produces several fermentation by-products (FBPs). Kimchi is praised for its flavor, taste, and texture when suitably fermented at 0.7% to 0.9% total acidity, or a pH of approximately 4.1. Beyond this acidity level, the quality of the product decreases, negatively impacting consumers' purchase preferences. Therefore, the current study seeks to develop an optimally fermented (OptF) kimchi indicator that can be inserted into product packaging to evaluate its utility at 4 and 10 °C. A gradual change in the total color difference (ΔE) was observed during the kimchi fermentation stage, and the highest ΔE values were observed at 4 (34.87) and 10 °C (37.99), after 9 weeks. Moreover, the color-change response function value F(Xc) was more linear at 4 and 10 °C (0.981 and 0.984, respectively) compared to the ΔE over time, during kimchi fermentation. Coefficients of determination for F(Xc)-carbon dioxide (0.983), F(Xc)-pH (0.979), and F(Xc)-titratable acidity (0.974) were sufficient to meet the optimal polynomial regression model, while that for F(Xc)-lactic acid bacteria (0.881) was not. Standardized residuals of predicted data indicated that 95% of the residuals were in the range of -2.0 to 2.0. The regression analysis further suggested that the OptF kimchi indicator could be used as a kimchi fermentation indicator. PRACTICAL APPLICATION: Cabbage kimchi, a traditional Korean fermented food, produces several fermentation by-products. After the optimal fermenting stage, the sensory evaluation of cabbage kimchi and consumers' purchase preference decreases. This study describes an optimally fermented kimchi indicator and its utility at 4 and 10 °C. Our results demonstrate the ability of this indicator to predict the freshness and fermentation stage of kimchi without the need for sensory evaluation. This method could help increase the purchase preference for commercial kimchi.


Assuntos
Brassica rapa/química , Fermentação , Alimentos Fermentados/normas , Tecnologia de Alimentos/métodos , Brassica rapa/microbiologia , Colorimetria , Alimentos Fermentados/análise , Microbiologia de Alimentos , Lactobacillales/crescimento & desenvolvimento , Paladar
5.
Sci Total Environ ; 749: 141574, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-32814207

RESUMO

Metal-doped TiO2 photocatalysis are recognized as effective materials for eliminating human norovirus (HuNoVs). In recent years, the airborne transmission of viral particles of HuNoVs has been a cause for concern. In this study, we evaluated the virucidal effects of a Cu/TiO2 non-woven fabric (NWF) on viral particles of HuNoV genogroup II genotype 4 (HuNoV GII.4) under an ultraviolet A light-emitting diode (UVA-LED) source. For the optimized parameters, a multivariate statistical analysis using the Box-Behnken design (BBD) technique combined with the response surface methodology (RSM) was applied. The experimental results showed that the Cu/TiO2-based NWF degraded HuNoV viral particles in the air samples. The BBD-based RSM indicated that the optimum treatment conditions for inactivating the HuNoV GII.4 droplets with the Cu/TiO2 NWF were a 1:7.7 ratio of Cu:TiO2 and the use of a 373-nm UVA-LED source for 48.08 min. The optimal conditions for the photocatalytic efficacy in HuNoV GII.4 of Cu/TiO2 NWF were verified experimentally, giving a value of 2.89 ± 0.11 log10 genomic copies, which was the same as the predicted value (2.91611) within experimental uncertainty. This result adequately validated the predicted model and confirmed that viral particles of HuNoVs could efficiently be disinfected using Cu/TiO2 NWF stimulated by UVA-LED light.


Assuntos
Norovirus , Genótipo , Humanos , Titânio , Vírion
6.
J Microbiol Biotechnol ; 29(10): 1580-1590, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31474094

RESUMO

Capsaicinoids in red pepper powder are known to show anti-bacterial effects; however, their effects during kimchi fermentation are not known. This study aimed to investigate the effects of various concentrations of capsaicinoids on kimchi fermentation. Five sets of kimchi samples were prepared using 0 mg/kg (control), 98.34 ± 5.34 mg/kg (mild), 243.47 ± 3.71 mg/kg (medium), 428.63 ± 30.78 mg/kg (hot), and 1,320.49 ± 28.27 mg/kg (extreme) capsaicinoid. The characteristics of each kimchi sample, including pH, acidity, organic acid, sugars, sugar alcohol, capsaicinoid content, and microbial community were periodically investigated during fermentation. Kimchi with red pepper powder shows significantly higher acidity than control kimchi, whereas pH values were the same. Organic acid in kimchi with red pepper powder was higher than in control kimchi, probably caused by higher lactic acid bacteria (LAB) counts in kimchi samples with red pepper powder. Our results show that addition of red pepper powder decreased Leuconostoc spp. counts in the bacterial community. In particular, Lactobacillus sakei and Leuconostoc gelidum counts increased and decreased, respectively, with increasing capsaicinoid content of red pepper powder added to kimchi. Overall, the results of this study indicate that physicochemical properties and LAB such as L. sakei and L. gelidum are influenced by capsaicinoid content. However, further studies are necessary to investigate the effects of the percentage of red pepper powder in kimchi on fermentation to provide practical guidelines for producing standardized kimchi.


Assuntos
Brassica/microbiologia , Capsaicina/análise , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Microbiota , Ácidos/análise , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Capsicum/química , Fermentação , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Açúcares/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...