Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3778-3785, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268146

RESUMO

Although recent dramatic advances in power conversion efficiencies (PCEs) have resulted in values over 19%, the poor photostability of organic photovoltaics (OPVs) has been a serious bottleneck to their commercialization. The photocatalytic effect, which is caused by incident ultraviolet-A (UV-A, 320-400 nm) light in the most commonly used zinc oxide (ZnOX) electron transport layer (ETL), significantly deteriorates the photostability of OPVs. In this work, we develop a new and facile method to enhance the photostability of nonfullerene acceptor-based OPVs by introducing UV-A-insensitive titanium suboxide (TiOX) ETL. Through an in-depth analysis of mass information at the interface between the ETL and photoactive layer, we confirm that the UV-A-insensitive TiOX suppresses the photocatalytic effect. The resulting device employing the TiOX ETL shows excellent photostability, obtaining 80% of the initial PCE for up to 200 h under 1 sun illumination, which is 10 times longer than that of the conventional ZnOX system (19 h).

2.
ACS Appl Mater Interfaces ; 15(40): 47317-47326, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756705

RESUMO

The development of an ideal solution-processable transparent electrode has been a challenge in the field of all-solution-processed semitransparent organic solar cells (ST-OSCs). We present a novel poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) top electrode for all-solution-processed ST-OSCs through in situ doping of PEDOT:PSS. A strongly polarized long perfluoroalkyl (n = 8) chain-anchored sulfonic acid effectively eliminates insulating PSS and spontaneously crystallizes PEDOT at room temperature, leading to outstanding electrical properties and transparency of PEDOT top electrodes. Doped PEDOT-based ST-OSCs yield a high power conversion efficiency of 10.9% while providing an average visible transmittance of 26.0% in the visible range. Moreover, the strong infrared reflectivity of PEDOT enables ST-OSCs to reject 62.6% of the heat emitted by sunlight (76.7% from infrared radiation), outperforming the thermal insulation capability of commercial tint films. This light management approach using PEDOT enables ST-OSCs to simultaneously provide energy generation and energy savings, making it the first discovery toward sustainable energy in buildings.

3.
Dalton Trans ; 50(41): 14547-14550, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34664045

RESUMO

Self-assembly of Hg(ClO4)2 with a new bidentate ligand (L) in acetone at room temperature produces single crystals consisting of unusual discrete tetranuclear complexes [Hg4(ClO4)4(CH2COCH2)2L2]·CH3COCH3via straightforward formation of dianionic acetonylate -CH2COCH2- in a quantitative yield.

4.
Dalton Trans ; 50(40): 14320-14324, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34558591

RESUMO

A procedure for the formation of a nitrate-encapsulating tripalladium(II) cage via self-assembly of Pd(NO3)2 with 1,3-bis(dimethyl(pyridin-4-yl)silyl)propane (L) was developed. The self-assembly reaction initially produces spiro-type macrocycles, PdL2, and finally results in transformation into a nitrate-encapsulated cage, [(NO3)@Pd3L6], in the mother liquor. The reaction of PdX2 (X- = BF4-, ClO4-, PF6-, and CF3SO3- instead of NO3-) with L gives rise to a spiro species, PdL2, as the final product, and anion exchange of the spiro products, [PdL2](X)2, with NO3- produces the tripalladium cage [(NO3)@Pd3L6].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...