Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38392159

RESUMO

Pipelines are embedded in industrial sites and residential environments, and maintaining these pipes is crucial to prevent leakage. Given that most pipelines are buried, the development of robots capable of exploring their interiors is essential. In this work, we introduce a novel in-pipe robot utilizing Continuously Variable Transmission (CVT) mechanisms for navigating various pipes, including vertical and curved pipes. The robot comprises one air motor, three CVT mechanisms, and six wheels at the end of six slider-crank mechanisms, including three active and three idler ones. The slider crank and spring mechanism generate a wall press force through the wheel to prevent slipping inside the pipe. This capability allows the robot to climb vertical pipes and adapt to various pipe diameters. Moreover, by combining CVT mechanisms, whose speed ratios between the driver and driven pulleys are passively adjusted by the position of the slider, the robot achieves independent and continuous speed control for each wheel. This enables it to navigate pipes with various geometries, such as straight-curved-straight pipes, using only one motor. Since active control of each wheel is not needed, the complexities of the robot controller can be significantly reduced. To validate the proposed mechanism, MATLAB simulations were conducted, and in-pipe driving experiments were executed. Both simulation and experimental results have shown that the robot can effectively navigate curved pipes with a maximum speed of 17.5 mm/s and a maximum traction force of 56.84 N.

2.
Sci Rep ; 14(1): 549, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272887

RESUMO

Numerous non-avian dinosaurs possessed pennaceous feathers on their forelimbs (proto-wings) and tail. Their functions remain unclear. We propose that these pennaceous feathers were used in displays to flush hiding prey through stimulation of sensory-neural escape pathways in prey, allowing the dinosaurs to pursue the flushed prey. We evaluated the escape behavior of grasshoppers to hypothetical visual flush-displays by a robotic dinosaur, and we recorded neurophysiological responses of grasshoppers' escape pathway to computer animations of the hypothetical flush-displays by dinosaurs. We show that the prey of dinosaurs would have fled more often when proto-wings were present, especially distally and with contrasting patterns, and when caudal plumage, especially of a large area, was used during the hypothetical flush-displays. The reinforcing loop between flush and pursue functions could have contributed to the evolution of larger and stiffer feathers for faster running, maneuverability, and stronger flush-displays, promoting foraging based on the flush-pursue strategy. The flush-pursue hypothesis can explain the presence and distribution of the pennaceous feathers, plumage color contrasts, as well as a number of other features observed in early pennaraptorans. This scenario highlights that sensory-neural processes underlying prey's antipredatory reactions may contribute to the origin of major evolutionary innovations in predators.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Membro Anterior/fisiologia , Estimulação Luminosa , Plumas , Evolução Biológica , Fósseis
3.
Soft Robot ; 11(2): 187-197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37646778

RESUMO

To make robots more human-like and safer to use around humans, artificial muscles exhibiting compliance have gained significant attention from researchers. However, despite having excellent performance, pneumatic artificial muscles (PAMs) have failed to gain significant traction in commercial mobile applications due to their requirement to be tethered to a pneumatic source. This study presents a thermo-PAM called Thermo-PAM that relies on heating of a volume of air to produce a deformation. This allows for pneumatic actuation using only an electrical power source and thus enables pumpless pneumatic actuation. The actuator uses a high ratio between the heating volume and the deformable volume to produce a high actuation force throughout its entire motion and can produce either contractile or extension motions. The controllability of the actuator was demonstrated as well as its ability to handle heavy payloads. Moreover, it is possible to rely on either positive or negative pressure actuation modes where the positive pressure actuation mode actuates when heated and the negative pressure actuation mode relaxes when heated. The ability to use Thermo-PAMs for different modes of actuation with different operation methods makes the proposed actuator highly versatile and demonstrates its potential for advanced pumpless robotic applications.


Assuntos
Músculo Esquelético , Robótica , Humanos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Movimento (Física) , Robótica/métodos
4.
Soft Robot ; 10(1): 17-29, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35255238

RESUMO

Twisted and coiled actuators (TCAs), which are light but capable of producing significant power, were developed in recent times. After their introduction, there have been numerous improvements in performance, including development of techniques such as actuation strain and heating methods. However, the development of robots using TCA is still in its early stages. In this study, a bionic arm driven by TCAs was developed for light and flexible operation. The aim of this study was to gain a foothold in the future of robot development using TCA, which is considered as the appropriate artificial muscle. The main developments were with regard to the design (from actuator design to system design), system configuration for control, and control method. First, a process technology for repeatedly manufacturing TCA, which can be used practically and delivers sufficient performance, was developed. Based on the developed actuator, a joint was designed to move the elbow and hand. The final bionic arm was developed by integrating the TCA, pulley joint, and control system. It moved the elbow up to 100° and allowed the hand to move in three degrees of freedom. Using the control method for each joint, we were able to show the movement by using the hand and elbow.


Assuntos
Braço , Robótica , Biônica , Robótica/métodos , Músculos , Movimento/fisiologia
5.
Sensors (Basel) ; 22(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36560078

RESUMO

Accurate dynamic model is critical for collaborative robots to achieve satisfactory performance in model-based control or other applications such as dynamic simulation and external torque estimation. Such dynamic models are frequently restricted to identifying important system parameters and compensating for nonlinear terms. Friction, as a primary nonlinear element in robotics, has a significant impact on model accuracy. In this paper, a reliable dynamic friction model, which incorporates the influence of temperature fluctuation on the robot joint friction, is utilized to increase the accuracy of identified dynamic parameters. First, robot joint friction is investigated. Extensive test series are performed in the full velocity operating range at temperatures ranging from 19 °C to 51 °C to investigate friction dependency on joint module temperature. Then, dynamic parameter identification is performed using an inverse dynamics identification model and weighted least squares regression constrained to the feasible space, guaranteeing the optimal solution. Using the identified friction model parameters, the friction torque is computed for measured robot joint velocity and temperature. Friction torque is subtracted from the measured torque, and a non-friction torque is used to identify dynamic parameters. Finally, the proposed notion is validated experimentally on the Indy7 collaborative robot manipulator, and the results show that the dynamic model with parameters identified using the proposed method outperforms the dynamic model with parameters identified using the conventional method in tracking measured torque, with a relative improvement of up to 70.37%.

6.
Front Robot AI ; 9: 713470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224001

RESUMO

The need for combined task and motion planning (CTAMP) in robotics is well known as robotic technologies become more mature. The goal of CTAMP is to determine a proper sequence of a robot's actions based on symbolic and geometric reasoning. Because of the fundamental difference in symbolic and geometric reasoning, a CTAMP system often requires an interface module between the two reasoning modules. We propose a CTAMP system in which a symbolic action sequence is generated in task planning, and each action is verified geometrically in motion planning using the off-the-shelf planners and reasoners. The approach is that a set of action models is defined with PDDL in the interface module (action library) and the required information to each planner is automatically provided by the interface module. The proposed method was successfully implemented in three simulated experiments that involve manipulation tasks. According to our findings, the proposed method is effective in responding to changes in the environment and uncertainty with errors in recognition of the environment and the robot motion control.

7.
Soft Robot ; 9(1): 119-127, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428510

RESUMO

In this study, a parasitic capacitance-free tactile sensor with a floating electrode that is capable of identifying actual physical contact pressure by distinguishing from parasitic effects and applicable to sensor arrays is presented. Although capacitive pressure sensors are known for their excellent pressure sensing capabilities in wide range with high sensitivity, they tend to suffer from a parasitic capacitance noise and unwanted proximity effects. Electromagnetic interference shielding was conventionally used to prevent this noise; however, it was not entirely successful in multicell array sensors. Parasitic capacitance-free method involves the use of a floating electrode, which functions as a contact trigger by causing sudden changes in capacitance only when the actual physical contact pressure has been applied or removed. The proposed method is robust, consistent, and precise. Experimental results show a wide range of pressure response up to 2.4 MPa with a sensitivity of 0.179 MPa-1 (up to 0.74 MPa) and negligible hysteresis.


Assuntos
Tato , Dispositivos Eletrônicos Vestíveis , Capacitância Elétrica , Eletrodos , Pressão
8.
Rev Sci Instrum ; 91(11): 115002, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261425

RESUMO

This paper presents a new biomimetic soft finger joint with elastic ligaments for enhanced restoration capability. A hemisphere-shaped flexible finger joint is designed to secure omnidirectional restoration and guarantee a reliable recovery function. Joint design comparative studies for enhancing restoration are presented with joint mechanisms and potential energy formulation analyses. A ligament design that enables an efficient grasping mode switch from power to pinch grasping is also considered. By using the presented joint and ligament, a tendon-driven robot hand is assembled. For the finger's biomimetic features, the hand provides a reasonably secure grasping operation for various complicated objects with minimum controls. The impact test and grasping experiments confirmed that the fabricated hand has the right amount of passive compliance in all directions as designed, and the restoration to the original state is also stably performed.


Assuntos
Articulações dos Dedos , Mãos , Fenômenos Mecânicos , Robótica , Tendões , Humanos
9.
Sensors (Basel) ; 20(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143062

RESUMO

The presence of a tactile sensor is essential to hold an object and manipulate it without damage. The tactile information helps determine whether an object is stably held. If a tactile sensor is installed at wherever the robot and the object touch, the robot could interact with more objects. In this paper, a skin type slip sensor that can be attached to the surface of a robot with various curvatures is presented. A simple mechanical sensor structure enables the cut and fit of the sensor according to the curvature. The sensor uses a non-array structure and can operate even if a part of the sensor is cut off. The slip was distinguished using a simple vibration signal received from the sensor. The signal is transformed into the time-frequency domain, and the slippage was determined using an artificial neural network. The accuracy of slip detection was compared using four artificial neural network models. In addition, the strengths and weaknesses of each neural network model were analyzed according to the data used for training. As a result, the developed sensor detected slip with an average of 95.73% accuracy at various curvatures and contact points.

10.
Nat Commun ; 11(1): 2252, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382034

RESUMO

Healable conductive materials have received considerable attention. However, their practical applications are impeded by low electrical conductivity and irreversible degradation after breaking/healing cycles. Here we report a highly conductive completely reversible electron tunneling-assisted percolation network of silver nanosatellite particles for putty-like moldable and healable nanocomposites. The densely and uniformly distributed silver nanosatellite particles with a bimodal size distribution are generated by the radical and reactive oxygen species-mediated vigorous etching and reduction reaction of silver flakes using tetrahydrofuran peroxide in a silicone rubber matrix. The close work function match between silicone and silver enables electron tunneling between nanosatellite particles, increasing electrical conductivity by ~5 orders of magnitude (1.02×103 Scm-1) without coalescence of fillers. This results in ~100% electrical healing efficiency after 1000 breaking/healing cycles and stability under water immersion and 6-month exposure to ambient air. The highly conductive moldable nanocomposite may find applications in improvising and healing electrical parts.

11.
Small ; 14(24): e1800549, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29756315

RESUMO

Soft conductive materials should enable large deformation while keeping high electrical conductivity and elasticity. The graphene oxide (GO)-based sponge is a potential candidate to endow large deformation. However, it typically exhibits low conductivity and elasticity. Here, the highly conductive and elastic sponge composed of GO, flower-shaped silver nanoparticles (AgNFs), and polyimide (GO-AgNF-PI sponge) are demonstrated. The average pore size and porosity are 114 µm and 94.7%, respectively. Ag NFs have thin petals (8-20 nm) protruding out of the surface of a spherical bud (300-350 nm) significantly enhancing the specific surface area (2.83 m2 g-1 ). The electrical conductivity (0.306 S m-1 at 0% strain) of the GO-AgNF-PI sponge is increased by more than an order of magnitude with the addition of Ag NFs. A nearly perfect elasticity is obtained over a wide compressive strain range (0-90%). The strain-dependent, nonlinear variation of Young's modulus of the sponge provides a unique opportunity as a variable stiffness stress sensor that operates over a wide stress range (0-10 kPa) with a high maximum sensitivity (0.572 kPa-1 ). It allows grasping of a soft rose and a hard bottle, with the minimal object deformation, when attached on the finger of a robot gripper.

12.
ACS Omega ; 3(1): 1110-1116, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457953

RESUMO

Durability and multifunctionality are very important factors for human skinlike tactile sensors for measuring physical stimuli if they provide reasonable pressure measurement range and sensitivity. Here, we propose a step tactile sensor with a simple processing unit, showing high repeatability and mechanical stability without drifting caused by thermal and geometrical noise. The proposed sensor, similar to a switch mechanism, detects the applied pressure discretely and has a wide pressure range of 2 kPa to 1.2 MPa according to its geometry. The developed tactile sensor can be designed and fabricated in various morphologies to detect a wide range of tactile stimuli, which help in customizing the sensor as per user demand for practical applications such as a prosthesis arm or hand. It is also easy to extend the sensor size to cover a large area owing to the simple fabrication process by using a 3D printer. Furthermore, with the addition of a flexible exterior layer of leuco dyes and the polydimethylsiloxane mixture, the color of a step tactile sensor not only resembles that of human skin color but also changes its color depending on the temperature changes as human skin does. Thus, the function of a pressure and temperature indicator in a flexible step sensor finds practical applications in various fields, including but not limited to prosthetic applications for the customized and comfortable usage.

13.
Soft Robot ; 5(2): 190-203, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29189106

RESUMO

Artificial muscle actuators made from commercial nylon fishing lines have been recently introduced and shown as a new type of actuator with high performance. However, the actuators also exhibit significant nonlinearities, which make them difficult to control, especially in precise trajectory-tracking applications. In this article, we present a nonlinear mathematical model of a conductive supercoiled polymer (SCP) actuator driven by Joule heating for model-based feedback controls. Our efforts include modeling of the hysteresis behavior of the actuator. Based on nonlinear modeling, we design a sliding mode controller for SCP actuator-driven manipulators. The system with proposed control law is proven to be asymptotically stable using the Lyapunov theory. The control performance of the proposed method is evaluated experimentally and compared with that of a proportional-integral-derivative (PID) controller through one-degree-of-freedom SCP actuator-driven manipulators. Experimental results show that the proposed controller's performance is superior to that of a PID controller, such as the tracking errors are nearly 10 times smaller compared with those of a PID controller, and it is more robust to external disturbances such as sensor noise and actuator modeling error.


Assuntos
Desenho de Equipamento/métodos , Robótica/instrumentação , Condutividade Elétrica , Retroalimentação , Dinâmica não Linear , Polímeros
14.
Sensors (Basel) ; 16(9)2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27649205

RESUMO

Touch sensors are crucial in controlling robotic manipulation when a robot interacts with environmental objects. In this study, multilayer flexible touch sensors in the form of an array were developed. The sensors use ink-type conductive flexible adhesives as electrodes which were printed on polyethylene terephthalate (PET) films in a parallel equidistance stripe pattern. Between the two printed layers, a double-sided adhesive film was used to combine each layer and was perforated at the junctions of the top and bottom electrodes with different-sized circles. These holes represent switching mechanisms between the top and bottom electrodes, and their sizes make the sensor respond to different levels of external pressure. We showed the durability of the fabricated sensor with 1 mm diameter holes by repeated experiments of exerting normal pressure ranging from 0 to 159.15 kPa for 1000 cycles. In case of 1 mm diameter holes, the state of each sensor node was reliably determined by the threshold pressures of 127.3 kPa for increasing pressure and 111.4 kPa for decreasing pressure. On the other hand, decreasing the hole size from 3 to 0.5 mm caused an increase in the threshold pressure from 1.41 to 214 kPa. The relation between the hole size and the threshold pressure was analyzed by a mechanical model. The sensor performance was also verified on curved surfaces up to 60 mm radius of curvatures. Additionally, we fabricated a sensor with three levels of sensitivity with a conventional method which was a thermal evaporation to show the extendibility of the idea.

15.
Nano Lett ; 14(4): 1944-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24661242

RESUMO

We report knitted fabrics made from highly conductive stretchable fibers. The maximum initial conductivity of fibers synthesized by wet spinning was 17460 S cm(-1) with a rupture tensile strain of 50%. The maximum strain could be increased to 490% by decreasing the conductivity to 236 S cm(-1). The knitted fabric was mechanically and electrically reversible up to 100% tensile strain when coated by poly(dimethylsiloxane). The normalized resistance of the poly(dimethylsiloxane)-coated fabric decreased to 0.65 at 100% strain.

16.
Nanotechnology ; 24(14): 145501, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23511195

RESUMO

A tactile display is an important tool to help humans interact with machines by using touch. In this paper, we present a transparent and stretchable graphene-based actuator for advanced tactile displays. The proposed actuator is composed of transparent and compliant graphene electrodes and a dielectric elastomer substrate. Since the electrode is coated onto the appointed region of the substrate layer by layer, only the area of the dielectric elastomer substrate with electrodes bumps up in response to the input voltage, which consequently produces actuation. The actuator is proven to be operable while preserving its electrical and mechanical properties even under 25% stretching. Also, the simple fabrication of the proposed actuator is cost-effective and can easily be extended to multiple arrays. The actuator is expected to be applicable to various applications including tactile displays, vari-focal lenses etc.


Assuntos
Grafite , Tato , Módulo de Elasticidade , Elastômeros , Eletrodos , Humanos , Nanotecnologia , Nanotubos de Carbono , Fenômenos Ópticos , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...