Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2405685, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963061

RESUMO

To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.

2.
Nat Commun ; 15(1): 4672, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824151

RESUMO

The oxygen evolution reaction, which involves high overpotential and slow charge-transport kinetics, plays a critical role in determining the efficiency of solar-driven water splitting. The chiral-induced spin selectivity phenomenon has been utilized to reduce by-product production and hinder charge recombination. To fully exploit the spin polarization effect, we herein propose a dual spin-controlled perovskite photoelectrode. The three-dimensional (3D) perovskite serves as a light absorber while the two-dimensional (2D) chiral perovskite functions as a spin polarizer to align the spin states of charge carriers. Compared to other investigated chiral organic cations, R-/S-naphthyl ethylamine enable strong spin-orbital coupling due to strengthened π-π stacking interactions. The resulting naphthyl ethylamine-based chiral 2D/3D perovskite photoelectrodes achieved a high spin polarizability of 75%. Moreover, spin relaxation was prevented by employing a chiral spin-selective L-NiFeOOH catalyst, which enables the secondary spin alignment to promote the generation of triplet oxygen. This dual spin-controlled 2D/3D perovskite photoanode achieves a 13.17% of applied-bias photon-to-current efficiency. Here, after connecting the perovskite photocathode with L-NiFeOOH/S-naphthyl ethylamine 2D/3D photoanode in series, the resulting co-planar water-splitting device exhibited a solar-to-hydrogen efficiency of 12.55%.

3.
Adv Sci (Weinh) ; : e2403326, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940393

RESUMO

Chirality-induced spin selectivity observed in chiral 2D organic-inorganic hybrid perovskite holds promise to achieve spin-dependent electrochemistry. However, conventional chiral 2D perovskites suffer from low conductivity and hygroscopicity, limiting electrochemical performance and operational stability. Here, a cutting-edge material design is introduced to develop a stable and efficient chiral perovskite-based spin polarizer by employing fluorinated chiral cation. The fluorination approach effectively promotes the charge carrier transport along the out-of-plane direction by mitigating the dielectric confinement effect within the multi-quantum well-structured 2D perovskite. Integrating the fluorinated cation incorporated spin polarizer with BiVO4 photoanode considerably boosts the photocurrent density while reducing overpotential through a spin-dependent oxygen evolution reaction. Furthermore, the hydrophobic nature of fluorine in spin polarizer endows operational stability to the photoanode, extending the durability by 280% as compared to the device with non-fluorinated spin polarizer.

4.
Nat Commun ; 15(1): 1495, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374159

RESUMO

Hydrogen production techniques based on solar-water splitting have emerged as carbon-free energy systems. Many researchers have developed highly efficient thin-film photoelectrochemical (PEC) devices made of low-cost and earth-abundant materials. However, solar water splitting systems suffer from short lifetimes due to catalyst instability that is attributed to both chemical dissolution and mechanical stress produced by hydrogen bubbles. A recent study found that the nanoporous hydrogel could prevent the structural degradation of the PEC devices. In this study, we investigate the protection mechanism of the hydrogel-based overlayer by engineering its porous structure using the cryogelation technique. Tests for cryogel overlayers with varied pore structures, such as disconnected micropores, interconnected micropores, and surface macropores, reveal that the hydrogen gas trapped in the cryogel protector reduce shear stress at the catalyst surface by providing bubble nucleation sites. The cryogelated overlayer effectively preserves the uniformly distributed platinum catalyst particles on the device surface for over 200 h. Our finding can help establish semi-permanent photoelectrochemical devices to realize a carbon-free society.

5.
Adv Mater ; 36(5): e2309335, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37996975

RESUMO

Circularly polarized light (CPL) is a crucial light source with a wide variety of potential applications such as magnetic recording, and 3D display. Here, core-shell heterostructured perovskite quantum dots (QDs) for room-temperature spin-polarized light-emitting diodes (spin-LEDs) are developed. Specifically, a 2D chiral perovskite shell is deposited onto the achiral 3D inorganic perovskite (CsPbBr3 ) core. Owing to the chiral-induced spin selectivity effect, the spin state of the injected charge carriers is biased when they are transmitted through the 2D chiral shell. The spin-controlled carriers then radiatively recombine inside the CsPbBr3 emissive core, resulting in CPL emission. It is demonstrated that the (R)- and (S)-1-(2-(naphthyl)ethylamine) (R-/S-NEA) 2D chiral cations enhance the spin polarization degree due to their strong chiroptical properties. Systematical defect analyses confirm that 2D chiral cations (i.e., R-/S-NEA) successfully passivate halide vacancies at the surface of the CsPbBr3 QDs, thereby attaining a high photoluminescence quantum yield of 78%. Moreover, the spin-LEDs prepared with core-shell QDs achieve a maximum external quantum efficiency of 5.47% and circularly polarized electroluminescence with a polarization degree (PCP-EL ) of 12% at room temperature. Finally, various patterns fabricated by inkjet printing the core-shell QDs emit strong CPL, highlighting their potential as an emitter for next-generation displays.

6.
J Am Chem Soc ; 145(41): 22620-22632, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37799086

RESUMO

Nanostructured silicon with an equilibrium shape has exhibited hydrogen evolution reaction activity mainly owing to its high surface area, which is distinct from that of bulk silicon. Such a Wulff shape of silicon favors low-surface-energy planes, resulting in silicon being an anisotropic and predictably faceted solid in which certain planes are favored, but this limits further improvement of the catalytic activity. Here, we introduce nanoporous silicon nanosheets that possess high-surface-energy crystal planes, leading to an unconventional Wulff shape that bolsters the catalytic activity. The high-index plane, uncommonly seen in the Wulff shape of bulk Si, has a band structure optimally aligned with the redox potential necessary for hydrogen generation, resulting in an apparent quantum yield (AQY) of 12.1% at a 400 nm wavelength. The enhanced light absorption in nanoporous silicon nanosheets also contributes to the high photocatalytic activity. Collectively, the strategy of making crystals with nontypical Wulff shapes can provide a route toward various classes of photocatalysts for hydrogen production.

7.
Small ; 19(40): e2304166, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37282813

RESUMO

The sluggish and complex multi-step oxygen evolution reaction remains an obstacle to bias-free photoelectrochemical water-splitting systems. Several theoretical studies have suggested that spin-aligned intermediate radicals can significantly enhance the kinetic rates for oxygen generation. Herein, it is reported that the chirality-induced spin selectivity phenomena can become an impressive approach by adopting chiral 2D organic-inorganic hybrid perovskites as a spin-filtering layer on the photoanode. This chiral 2D perovskite-based water-splitting device achieves enhanced oxygen evolution performance with a reduced overpotential of 0.14 V, high fill factor, and 230% increased photocurrent compared to a device without a spin-filtering layer. Moreover, combined with a superhydrophobic patterning strategy, this device realizes excellent operational stability by sustaining ≈90% of the initial photocurrent, even after 10 h.

8.
Nat Commun ; 14(1): 3124, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253736

RESUMO

In principle, the induced chirality of hybrid perovskites results from symmetry-breaking within inorganic frameworks. However, the detailed mechanism behind the chirality transfer remains unknown due to the lack of systematic studies. Here, using the structural isomer with different functional group location, we deduce the effect of hydrogen-bonding interaction between two building blocks on the degree of chirality transfer in inorganic frameworks. The effect of asymmetric hydrogen-bonding interaction on chirality transfer was clearly demonstrated by thorough experimental analysis. Systematic studies of crystallography parameters confirm that the different asymmetric hydrogen-bonding interactions derived from different functional group location play a key role in chirality transfer phenomena and the resulting spin-related properties of chiral perovskites. The methodology to control the asymmetry of hydrogen-bonding interaction through the small structural difference of structure isomer cation can provide rational design paradigm for unprecedented spin-related properties of chiral perovskite.

9.
Small ; 19(39): e2302597, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246255

RESUMO

Ultrathin crystalline silicon is widely used as an active material for high-performance, flexible, and stretchable electronics, from simple passive and active components to complex integrated circuits, due to its excellent electrical and mechanical properties. However, in contrast to conventional silicon wafer-based devices, ultrathin crystalline silicon-based electronics require an expensive and rather complicated fabrication process. Although silicon-on-insulator (SOI) wafers are commonly used to obtain a single layer of crystalline silicon, they are costly and difficult to process. Therefore, as an alternative to SOI wafers-based thin layers, here, a simple transfer method is proposed for printing ultrathin multiple crystalline silicon sheets with thicknesses between 300 nm to 13 µm and high areal density (>90%) from a single mother wafer. Theoretically, the silicon nano/micro membrane can be generated until the mother wafer is completely consumed. In addition, the electronic applications of silicon membranes are successfully demonstrated through the fabrication of a flexible solar cell and flexible NMOS transistor arrays.

10.
Small ; 19(27): e2300174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36965011

RESUMO

A wireless solar water splitting device provides a means to achieve an inexpensive and highly distributed solar-to-fuel system owing to its portability, flexible scale, and simple design. Here, a highly efficient hydrogen-generating artificial leaf is introduced, which is a wireless configuration for converting solar energy into chemical energy, by integrating a hybrid perovskite (PSK) as the light absorber with catalysts for electrochemical reaction. First, a single integrated photoelectrochemical photocathode, and a spatially decoupled hydrogen evolution reaction catalyst, are fabricated. A decoupled geometry is adopted to enable the physical protection of the PSK layer from the electrolyte, thus allowing excellent stability for over 85 h. Additionally, an efficient dual photovoltaic module photocathode is fabricated to produce sufficient photovoltage to drive water splitting reactions, as well as a high photocurrent to achieve the applied-bias photoconversion efficiency (13.5%). To investigate the overall water splitting performance, a NiFe-OH catalyst is employed, and the device with a wired configuration achieves a photocurrent density of 9.35 mA cm-2 , corresponding to a solar to hydrogen (STH) efficiency of 11.5%. The device with a fully integrated wireless artificial leaf configuration exhibited a similar STH efficiency of over 11%, demonstrating the effectiveness of this cell design.

11.
Nat Commun ; 14(1): 609, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739416

RESUMO

Stabilizing atomically dispersed single atoms (SAs) on silicon photoanodes for photoelectrochemical-oxygen evolution reaction is still challenging due to the scarcity of anchoring sites. Here, we elaborately demonstrate the decoration of iridium SAs on silicon photoanodes and assess the role of SAs on the separation and transfer of photogenerated charge carriers. NiO/Ni thin film, an active and highly stable catalyst, is capable of embedding the iridium SAs in its lattices by locally modifying the electronic structure. The isolated iridium SAs enable the effective photogenerated charge transport by suppressing the charge recombination and lower the thermodynamic energy barrier in the potential-determining step. The Ir SAs/NiO/Ni/ZrO2/n-Si photoanode exhibits a benchmarking photoelectrochemical performance with a high photocurrent density of 27.7 mA cm-2 at 1.23 V vs. reversible hydrogen electrode and 130 h stability. This study proposes the rational design of SAs on silicon photoelectrodes and reveals the potential of the iridium SAs to boost photogenerated charge carrier kinetics.

12.
Adv Sci (Weinh) ; 10(6): e2206286, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646498

RESUMO

To realize practical solar hydrogen production, a low-cost photocathode with high photocurrent density and onset potential should be developed. Herein, an efficient and stable overall photoelectrochemical tandem cell is developed with a Cu3 BiS3 -based photocathode. By exploiting the crystallographic similarities between Bi2 S3 and Cu3 BiS3 , a one-step solution process with two sulfur sources is used to prepare the Bi2 S3 -Cu3 BiS3 blended interlayer. The elongated Bi2 S3 -Cu3 BiS3 mixed-phase 1D nanorods atop a planar Cu3 BiS3 film enable a high photocurrent density of 7.8 mA cm-2 at 0 V versus the reversible hydrogen electrode, with an onset potential of 0.9 VRHE . The increased performance over the single-phase Cu3 BiS3 thin-film photocathode is attributed to the enhanced light scattering and charge collection through the unique 1D nanostructure, improved electrical conductivity, and better band alignment with the n-type CdS layer. A solar-to-hydrogen efficiency of 2.33% is achieved under unassisted conditions with a state-of-the-art Mo:BiVO4 photoanode, with excellent stability exceeding 21 h.

13.
J Am Chem Soc ; 144(35): 16020-16033, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36036662

RESUMO

Chiral perovskites have emerged as promising candidates for polarization-sensing materials. Despite their excellent chiroptical properties, the nature of their multiple-quantum-well structures is a critical hurdle for polarization-based and spintronic applications. Furthermore, as the origin of chiroptical activity in chiral perovskites is still illusive, the strategy for simultaneously enhancing the chiroptical activity and charge transport has not yet been reported. Here, we demonstrated that incorporating a Lewis base into the lattice can effectively tune the chiroptical response and electrical properties of chiral perovskites. Through solid-state nuclear magnetic resonance spectroscopic measurements and theoretical calculations, it was demonstrated that the material property manipulation resulted from the change in the time-averaged structure induced by the Lewis base. Finally, as a preliminary proof of concept, a vertical-type circularly polarized light photodetector based on chiral perovskites was developed, exhibiting an outstanding performance with a distinguishability of 0.27 and a responsivity of 0.43 A W-1.

14.
Nat Commun ; 13(1): 3259, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672362

RESUMO

Chiral perovskites are being extensively studied as a promising candidate for spintronic- and polarization-based optoelectronic devices due to their interesting spin-polarization properties. However, the origin of chiroptical activity in chiral perovskites is still unknown, as the chirality transfer mechanism has been rarely explored. Here, through the nano-confined growth of chiral perovskites (MBA2PbI4(1-x)Br4x), we verified that the asymmetric hydrogen-bonding interaction between chiral molecular spacers and the inorganic framework plays a key role in promoting the chiroptical activity of chiral perovskites. Based on this understanding, we observed remarkable asymmetry behavior (absorption dissymmetry of 2.0 × 10-3 and anisotropy factor of photoluminescence of 6.4 × 10-2 for left- and right-handed circularly polarized light) in nanoconfined chiral perovskites even at room temperature. Our findings suggest that electronic interactions between building blocks should be considered when interpreting the chirality transfer phenomena and designing hybrid materials for future spintronic and polarization-based devices.

15.
Small ; 18(29): e2202159, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35748140

RESUMO

Quasi 2D perovskite solar cells (PSCs) are promising light absorbers that overcome the inherent instabilities of 3D perovskites. High-performance and stable 2D PSCs require careful control over the crystallographic orientation and phase distribution. This study introduces a simple and universal bifacial stamping method to obtain highly oriented perovskite crystals with a reverse-graded structure, where the low-n-value 2D perovskite phases are located mainly at the film surfaces. Bifacial stamping of 3D perovskite films atop the 2D films enables incorporation of 2D spacer cations into the 3D film surfaces, forming reverse-graded quasi-2D perovskite films. During stamping, suppressed evaporation of the precursor solvent induces heterogeneous nucleation from the contact interface between the 2D and 3D films, resulting in well-crystallized perovskite films having out-of-plane alignments with respect to the substrate. Thus, a highly oriented and reverse-graded quasi-2D perovskite with an average n value of 18 is obtained with power conversion efficiency exceeding 17% and high open-circuit voltage of 1.11 V for iso-butylammonium (iso-BA)-based (iso-BA2 MAn -1 Pbn I3 n +1 ) PSCs. The unencapsulated device retains 92% of its initial efficiency after aging at 40 ± 5% relative humidity for 1200 h. This work provides a new strategy for fabricating highly oriented and phase-controlled quasi-2D PSCs.

16.
Adv Sci (Weinh) ; 8(21): e2102458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34494726

RESUMO

To achieve a high solar-to-hydrogen (STH) conversion efficiency, delicate strategies toward high photocurrent together with sufficient onset potential should be developed. Herein, an SnS semiconductor is reported as a high-performance photocathode. Use of proper sulfur precursor having weak dipole moment allows to obtain high-quality dense SnS nanoplates with enlarged favorable crystallographic facet, while suppressing inevitable anisotropic growth. Furthermore, the introducing Ga2 O3 layer between SnS and TiO2 in SnS photocathodes efficiently improves the charge transport kinetics without charge trapping. The SnS photocathode reveals the highest photocurrent density of 28 mA cm-2 at 0 V versus the reversible hydrogen electrode. Overall solar water splitting is demonstrated for the first time by combining the optimized SnS photocathode with a Mo:BiVO4 photoanode, achieving a STH efficiency of 1.7% and long-term stability of 24 h. High performance and low-cost SnS photocathode represent a promising new material in the field of photoelectrochemical solar water splitting.

17.
Adv Mater ; 33(47): e2005760, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33885185

RESUMO

Organic-inorganic hybrid halide perovskites (OIHPs) are commonly used as prototypical materials for various applications, including photovoltaics, photodetectors, and light-emitting devices. Since the chiroptical properties of OIHPs are deciphered in 2017, chiral OIHPs have been rediscovered as new hybrid systems comprising chiral organic molecules and achiral inorganic octahedral layers. Owing to their exceptional optoelectrical properties and structural flexibility, chiral OIHPs have received a considerable amount of attention in chiral photonics, chiroptoelectronics, spintronics, and ferroelectrics. Despite their intriguing chiral properties, the transfer mechanism from chiral molecules to achiral semiconductors has not been extensively investigated. Furthermore, an in-depth understanding of the origin of chiroptical activity is still elusive. In this review article, recent advances in the chiroptical activities of chiral OIHPs and polarization-based devices adopting chiral OIHPs are comprehensively discussed, and insight into the underlying chirality transfer mechanism based on theoretical considerations is provided. This comprehensive survey, with an emphasis on the chirality transfer mechanism, will help readers understand the chiroptical properties of OIHPs, which are crucial for the development of spin-based photonic and optoelectronic devices. Additionally, promising strategies to exploit the potential of chiral OIHPs are also discussed.

18.
ACS Appl Mater Interfaces ; 12(37): 41674-41686, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32794695

RESUMO

To resolve the inherent trade-off issue between responsivity and detectivity in FA0.9Cs0.1PbI3 perovskite photodetectors, this paper proposes a novel strategy using multifunctional self-combustion additives (urea and ammonium nitrate). During the early stages of crystallization, urea allows for the formation of a strong Lewis complex-derived low-dimensional intermediate phase; this suppresses the formation of perovskite nuclei, while ammonium ions assist the preferred grain growth along the [110] direction. During the high-temperature annealing steps, a self-combusting exothermic reaction occurs between urea as a fuel and NH4NO3 as an oxidizer, through which a locally supplied heat facilitates the removal of residual urea and byproducts. These multifunctional roles of self-combustible additives facilitate the production of high-quality, enlarged grain-structured perovskite films with improved optoelectronic properties, as confirmed by various analyses, including impedance spectroscopy and intensity-modulated photocurrent spectroscopy. The resulting FA0.9Cs0.1PbI3-based photodiode-type photodetectors exhibit outstanding performance, such as a high responsivity (0.762 A W-1) and specific detectivity (over 5.08 × 1013 Jones) at a very low external reverse bias (-0.5 V). Our findings clearly suggest that the multifunctional self-combustion additives strategy could help realize the full potential of FA1-xCsxPbI3 as a photodiode-type photodetector.

19.
ACS Appl Mater Interfaces ; 12(12): 13824-13835, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32134237

RESUMO

Flexible perovskite solar cells (PSCs) have attracted significant interest as promising candidates for portable and wearable devices. Copper nanowires (CuNWs) are promising candidates for transparent conductive electrodes for flexible PSCs because of their excellent conductivity, flexibility, and cost-effectiveness. However, because of the thermal/chemical instability of CuNWs, they require a protective layer for application in PSCs. Previous PSCs with CuNW-based electrodes generally exhibited poor performances compared with their indium tin oxide-based counterparts because of the neglect of the interfacial energetics between the electron transport layer (ETL) and CuNWs. Herein, an Al-doped ZnO (AZO) protective layer fabricated using atomic layer deposition is introduced. The AZO/CuNW-based composite electrode exhibits improved thermal/chemical stability and favorable band alignment between the ETL and CuNWs, based on the Al dopant concentration tuning. As a result, the Al content gradient AZO (g-AZO), composed of three successively deposited AZO layers, leads to highly efficient flexible PSCs with a power conversion efficiency (PCE) of 14.18%, whereas the PCE of PSCs with a non-g-AZO layer is 12.34%. This improvement can be attributed to the efficient electron extraction and reduced charge recombination. Furthermore, flexible PSCs based on g-AZO-based composite electrodes retain their initial PCE, even after 600 bending cycles, demonstrating excellent mechanical stability.

20.
ACS Appl Mater Interfaces ; 12(13): 15155-15166, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32167272

RESUMO

Although tin monosulfide (SnS) is one of the promising earth-abundant semiconducting materials for photoelectrochemical water splitting, the performance of SnS photocathodes remains poor. Herein, we report a stepwise approach for the fabrication of highly efficient photocathodes based on SnS nanoplates via elaborate modulation of molecular solutions. It is demonstrated that phase-pure SnS nanoplates without detrimental secondary phases (such as SnS2 and Sn2S3) can be readily obtained by adjusting the amounts of Sn and S in the precursor solution. Additionally, the orientation of SnS nanoplates is controlled by implementing different types of SnS seed layers. The orientations of the SnS seed layers are changed according to the molecular shapes of the Sn-S bonds in the molecular solutions, depending on the relative nucleophilicity of the molecular moieties formed by specific thiol-amine reactions. The molecular Sn-S sheets in the seed ink was obtained by the reaction in a solvent mixture of thiogylcolic acid and ethanolamine. By contrast, the short Sn-S molecular rods result from the reaction in a solvent mixture of 2-mercaptoethanol and ethylenediamine. Interestingly, the relatively short rodlike morphology of the SnS seed induces the growth of SnS nanostructures faceted by preferred (111) and (101) planes, leading to fast charge transport. With the formation of a proper band alignment with n-type CdS and TiO2, the preferred (111)- and (101)-oriented SnS nanoplate-based photocathode exhibited a photocurrent density of -19 mA cm-2 at 0 V versus a reversible hydrogen electrode, establishing a new benchmark for SnS photocathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...