Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Cancer Res ; 6(6): 978-89, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18567801

RESUMO

DNA damage and mutations in the genome increase with age. To determine the potential mechanisms of senescence-dependent increases in genomic instability, we analyzed DNA mismatch repair (MMR) efficiency in young and senescent human colonic fibroblast and human embryonic lung fibroblast. It was found that MMR activity is significantly reduced in senescent cells. Western blot and immunohistochemistry analysis revealed that hMSH2 and MSH6 protein (MutS alpha complex), which is a known key component in the MMR pathway, is markedly down-regulated in senescent cells. Moreover, the addition of purified MutS alpha to extracts from senescent cells led to the restoration of MMR activity. Semiquantitative reverse transcription-PCR analysis exhibited that MSH2 mRNA level is reduced in senescent cells. In addition, a decrease in E2F transcriptional activity in senescent cells was found to be crucial for MSH2 suppression. E2F1 small interfering RNA expression reduced hMSH2 expression and MMR activity in young human primary fibroblast cells. Importantly, expression of E2F1 in quiescent cells restored the MSH2 expression as well as MMR activity, whereas E2F1-infected senescent cells exhibited no restoration of MSH2 expression and MMR activity. These results indicate that the suppression of E2F1 transcriptional activity in senescent cells lead to stable repression of MSH2, followed by a induction of MutS alpha dysfunction, which results in a reduced cellular MMR capacity in senescent cells.


Assuntos
Senescência Celular , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Animais , Linhagem Celular , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/metabolismo , Humanos , Intestino Grosso/metabolismo , Camundongos , Proteína 2 Homóloga a MutS/genética , Regiões Promotoras Genéticas , Interferência de RNA
3.
Cancer Cell Int ; 4(1): 6, 2004 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-15494073

RESUMO

BACKGROUND: Heptaplatin is a new platinum derivative with anticancer activity against various cancer cell lines, including cisplatin-resistant cancer cell lines (Cancer Chemother Pharmacol 1995; 35: 441). METHODS: Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines has been investigated in connection with metallothionein (MT). Cytotoxicity was determined by an MTT assay. MT mRNA, was determined by RT-PCR assay. Transfection study was carried out to examine the function of MT. RESULTS: Of various gastric cancer cell lines, SNU-638 and SNU-601 showed the highest and lowest levels of MT mRNA, respectively, showing 80-fold difference. The IC50 values of SNU-638 to cisplatin, carboplatin and heptaplatin were 11.2-fold, 5.1-fold and 2.0-fold greater than those of SNU-601, respectively. Heptaplatin was more effective against cisplatin-resistant and MT-transfected gastric cancer sublines than cisplatin or carboplatin was. In addition, heptaplatin attenuated cadmium, but not zinc, induction of MT. CONCLUSION: These results indicate that molecular mechanisms of heptaplatin effective against cisplatin-resistant gastric cancer sublines is at least in part due to the less involvement of MT in heptaplatin resistance as well as its attenuation of MT induction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...