Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(29)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608317

RESUMO

Achieving energy-efficient and high-performance field-effect transistors (FETs) is one of the most important goals for future electronic devices. This paper reports semiconducting single-walled carbon nanotube FETs (s-SWNT-FETs) with an optimized high-krelaxor ferroelectric insulator P(VDF-TrFE-CFE) thickness for low-voltage operation. The s-SWNT-FETs with an optimized thickness (∼800 nm) of the high-kinsulator exhibited the highest average mobility of 14.4 cm2V-1s-1at the drain voltage (ID) of 1 V, with a high current on/off ratio (Ion/off>105). The optimized device performance resulted from the suppressed gate leakage current (IG) and a sufficiently large capacitance (>50 nF cm-2) of the insulating layer. Despite the extremely high capacitance (>100 nF cm-2) of the insulating layer, an insufficient thickness (<450 nm) induces a highIG, leading to reducedIDand mobility of s-SWNT-FETs. Conversely, an overly thick insulator (>1200 nm) cannot introduce sufficient capacitance, resulting in limited device performance. The large capacitance and sufficient breakdown voltage of the insulating layer with an appropriate thickness significantly improved p-type performance. However, a reduced n-type performance was observed owing to the increased electron trap density caused by fluorine proportional to the insulator thickness. Hence, precise control of the insulator thickness is crucial for achieving low-voltage operation with enhanced s-SWNT-FET performance.

2.
ACS Appl Mater Interfaces ; 16(10): 12853-12864, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427782

RESUMO

The asymmetric monochlorination strategy not only effectively addresses the steric issues in conventional dichlorination but also enables the development of promising acceptor units and semiregioregular polymers. Herein, monochlorinated isoindigo (1CIID) is successfully designed and synthesized by selectively introducing single chlorine (Cl) atoms. Furthermore, the 1CIID copolymerizes with two donor counterparts, centrosymmetric 2,2'-bithiophene (2T) and axisymmetric 4,7-di(thiophen-2-yl)benzo[1,2,5]thiadiazole (DTBT), forming two polymers, P1CIID-2T and P1CIID-DTBT. These polymers exhibit notable differences in backbone linearity and dipole moments, influenced by the symmetry of their donor counterparts. In particular, P1CIID-2T, which contains a centrosymmetric 2T unit, demonstrates a linear backbone and a significant dipole moment of 10.20 D. These properties contribute to the favorable film morphology of P1CIID-2T, characterized by highly ordered crystallinity in the presence of fifth-order (500) X-ray diffraction peaks. Notably, P1CIID-2T exhibits a significant improvement in molecular alignment under dynamic force, resulting in over 8-fold improvement in the performance of organic field-effect transistor (OFET) devices, with superior electron mobility up to 1.22 cm2 V-1 s-1. This study represents the first synthesis of asymmetric monochlorinated isoindigo-based conjugated polymers, highlighting the potential of asymmetric monochlorination for developing n-type semiconducting polymers. Moreover, our findings provide valuable insights into the relationship between the molecular structure and properties.

3.
Adv Mater ; 36(4): e2307402, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989225

RESUMO

For optimizing steady-state performance in organic electrochemical transistors (OECTs), both molecular design and structural alignment approaches must work in tandem to minimize energetic and microstructural disorders in polymeric mixed ionic-electronic conductor films. Herein, a series of poly(diketopyrrolopyrrole)s bearing various lengths of aliphatic-glycol hybrid side chains (PDPP-mEG; m = 2-5) is developed to achieve high-performance p-type OECTs. PDPP-4EG polymer with the optimized length of side chains exhibits excellent crystallinity owing to enhanced lamellar and backbone interactions. Furthermore, the improved structural ordering in PDPP-4EG films significantly decreases trap state density and energetic disorder. Consequently, PDPP-4EG-based OECT devices produce a mobility-volumetric capacitance product ([µC*]) of 702 F V-1 cm-1 s-1 and a hole mobility of 6.49 ± 0.60 cm2 V-1 s-1 . Finally, for achieving the optimal structural ordering along the OECT channel direction, a floating film transfer method is employed to reinforce the unidirectional orientation of polymer chains, leading to a substantially increased figure-of-merit [µC*] to over 800 F V-1 cm-1 s-1 . The research demonstrates the importance of side chain engineering of polymeric mixed ionic-electronic conductors in conjunction with their anisotropic microstructural optimization to maximize OECT characteristics.

4.
ACS Appl Mater Interfaces ; 15(24): 29568-29576, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37264497

RESUMO

Increasing the number of charge carriers flowing through the charge transport channel to improve the electrical performance of organic field-effect transistors (OFETs) is important because it leads to a low driving voltage and a high drain current value. This paper proposes a new strategy, the corona poling process, to enhance the electrical performance of OFETs using an external electric field when forming a dielectric film using a PVDF-based high-k dielectric terpolymer, P(VDF-TrFE-CFE). A corona poling process was applied to align the dipoles with high-k dielectric molecules and improve the capacitance, thereby increasing the number of charge carriers. Through this process, by observing the phase transition of a PVDF dielectric through a corona poling process in the GIWAXS data, the phase transition through an external electric field was thoroughly revealed for the first time. As a result, the capacitance of high-k dielectric films can be improved, and the amount of charge carriers can be increased by a simple corona poling process. In addition, to reduce the effect of deep trap sites caused by the dipole alignment, a thin low-k dielectric, polystyrene (PS), was introduced between the active and high-k dielectric layers to provide trap site passivation, thereby increasing the electrical performance of the OFET. Therefore, through this strategy, using a diketopyrrolopyrrole (DPP)-based donor-acceptor (D-A) copolymer as an active material of OFET, the average saturation region hole mobility was improved from 0.34 to 0.60 cm2/Vs. Thus, the electrical performances of the OFETs were improved by enhancing the capacitance through the corona poling process and reducing the charge carrier trap sites introduced by the high-k and low-k bi-layer dielectric layer. Importantly, this work offers a new strategy for the post-treatment to improve electrical performance of organic devices.

5.
ACS Appl Mater Interfaces ; 13(45): 54227-54236, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734703

RESUMO

It is essential to tune the electrical properties of inorganic semiconductors via a doping process in the fabrication of cutting-edge electronic devices; however, the doping in organic field-effect transistors (OFETs) is limited by the uncontrollable dopant diffusion and low doping efficiencies. This study proposes the use of a fluorinated functional group in a polymer dielectric layer as an effective p-type doping strategy for ambipolar diketopyrrolopyrrole (DPP)-based donor-acceptor (D-A)-type semiconducting copolymer films used in OFETs, without generating structural perturbations. To experimentally verify the surface polarization doping effect of the fluorinated group, two terpolymers─poly(pentafluorostyrene-co-3-azidopropyl-methacrylate-co-propargyl-methacrylate) (5F-SAPMA), wherein fluorinated units are included, and poly(phenyl-methacrylate-co-3-azidopropyl-methacrylate-co-propargyl-methacrylate) (PhAPMA), without fluorinated units─are designed and synthesized for use in OFETs. The synthesized 5F-SAPMA and PhAPMA films were cross-linked through the click reaction between the alkyne and azide units in the terpolymers at 150 °C to provide chemical, thermal, and mechanical stabilities and solvent resistance. The electrical characterization of the OFETs with the newly synthesized terpolymer dielectrics reveals that the surface polarization induced by the fluorinated groups of the 5F-SAPMA dielectrics leads to the generation of additional hole charges and helps minimize the broadening of the extended tail states in the vicinity of the valence band (highest occupied molecular orbital (HOMO) level). This not only enables a transition from the ambipolar to p-type dominant characteristics but also helps increase the hole mobility from 0.023 to 0.305 cm2/(V·s).

6.
ACS Omega ; 6(41): 27305-27314, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693151

RESUMO

In this work, we synthesized and characterized two quinoidal small molecules based on benzothiophene modified and original isatin terminal units, benzothiophene quinoidal thiophene (BzTQuT) and quinoidal thiophene (QuT), respectively, to investigate the effect of introducing a fused ring into the termini of quinoidal molecules. Extending the terminal unit of the quinoidal molecule affected the extension of π-electron delocalization and decreased the bond length alternation, which led to the downshifting of the collective Raman band and dramatically lowering the band gap. Organic field-effect transistor (OFET) devices in neat BzTQuT films showed p-type transport behavior with low hole mobility, which was ascribed to the unsuitable film morphology for charge transport. By blending with an amorphous insulating polymer, polystyrene, and poly(2-vinylnaphthalene), an OFET based on a BzTQuT film annealed at 150 °C exhibited improved mobility up to 0.09 cm2 V-1 s-1. This work successfully demonstrated that the extension of terminal groups into the quinoidal structure should be an effective strategy for constructing narrow band gap and high charge transporting organic semiconductors.

7.
RSC Adv ; 11(3): 1517-1523, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424089

RESUMO

A highly fluorinated alternating polymer, P(RFMi-St), possessing improved thermal properties and patterning capabilities over perfluoroalkyl polymethacrylates under high energy radiation was achieved with semi-perfluorododecyl maleimide (RFMi) and styrene (St). RFMi could be synthesised efficiently via a Mitsunobu reaction condition and copolymerised with St by free radical and reversible-deactivation radical polymerisation protocols. P(RFMi-St) showed a satisfactory glass-transition temperature (108 °C) and intermolecular cross-linking behaviour under electron-beam and commercially more important extreme UV (λ = 13.5 nm) irradiation. The exposed regions lost their solubility, resulting in the successful formation of mechanically non-deteriorated negative-tone images down to 50 nm. In addition, P(RFMi-St) could be solution-processed with chemically non-damaging fluorous liquids, which enabled the polymer to be applied effectively on top of an organic semiconductor layer as a dielectric material (dielectric constant 2.7) for the organic field-effect transistor fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...