Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Foods Hum Nutr ; 78(2): 336-341, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971946

RESUMO

Lemon balm (Melissa officinalis L.) is commonly consumed as an herbal tea for its antioxidant health benefits. Young seedlings known as microgreens are popular for their distinct flavors and can contain higher mineral content on a dry weight basis compared to their adult counterparts. However, the use of microgreens for herbal teas has not been previously investigated. In this study, lemon balm was grown to adult and microgreen harvest stages and prepared as herbal teas by brewing with boiled (100 °C) water for 5 minutes and room temperature water (22 °C) for 2 hours. The effects of harvest time and brewing method on the mineral content, phenolic compounds, and antioxidant capacity of lemon balm herbal teas were assessed. Results showed that adult lemon balm tea contained higher total phenolics, total flavonoids, rosmarinic acid, and antioxidant capacity than microgreen teas, with hot preparations containing the highest amounts (p ≤ 0.05). In contrast, microgreen lemon balm teas contained higher amounts of minerals (p ≤ 0.05), including calcium, potassium, magnesium, sodium, phosphorus, copper, and zinc. In general, brewing conditions did not impact the content of most minerals. Overall, the results support the potential of using dried microgreens as herbal teas. Microgreen lemon balm teas prepared hot and cold offer antioxidant compounds and are richer sources of minerals than adult teas. The ease of growth for microgreens offers consumers the opportunity for home preparation of a novel herbal tea beverage.


Assuntos
Melissa , Chás de Ervas , Antioxidantes/análise , Extratos Vegetais/farmacologia , Fenóis/análise , Minerais
2.
Front Plant Sci ; 12: 716437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421969

RESUMO

Selenium biofortification of plants has been suggested as a method of enhancing dietary selenium intake to prevent deficiency and chronic disease in humans, while avoiding toxic levels of intake. Popular herbs such as basil (Ocimum basilicum L.), cilantro (Coriandrum sativum L.), and scallions (Allium fistulosum L.) present an opportunity for biofortification as these plants are used for added flavors to meals and are available as microgreens, young plants with increasing popularity in the consumer marketplace. In this study, basil, cilantro, and scallion microgreens were biofortified with sodium selenate under hydroponic conditions at various selenium concentrations to investigate the effects on yield, selenium content, other mineral contents (i.e., sodium, potassium, calcium, magnesium, phosphorus, copper, zinc, iron, manganese, sulfur, and boron), total phenol content, and antioxidant capacity [oxygen radical absorbance capacity (ORAC)]. The results showed that the selenium content increased significantly at all concentrations, with scallions demonstrating the largest increase. The effects on other minerals varied among herb species. Antioxidant capacity and total phenol content increased in all herbs at the highest selenium treatments, but basil and scallions demonstrated a decreased crop yield. Overall, these biofortified culinary herb microgreens are an ideal functional food for enhancing selenium, other dietary minerals, and antioxidants to benefit human health.

3.
PLoS One ; 16(4): e0250284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901201

RESUMO

Water deficit limits plant growth and development, resulting in quality loss of horticultural crops. However, there is limited information on gene regulation and signaling pathways related to water deficit stress response at multiple time points. The objective of this research was to investigate global gene expression patterns under water deficit stress to provide an insight into how petunia (Petunia ×hybrida 'Mitchell Diploid') responded in the process of stress. Nine-week-old petunias were irrigated daily or placed under water stress by withholding water. Stressed plants reduced stomatal conductance after five days of water deficit, indicating they perceived stress and initiated stress response mechanisms. To analyze transcriptomic changes at the early stage of water deficit, leaf tissue samples were collected 1, 3, and 5 days after water was withheld for RNA sequencing. Under water deficit stress, 154, 3611, and 980 genes were upregulated and 41, 2806, and 253 genes were downregulated on day 1, 3, and 5, respectively. Gene Ontology analysis revealed that redox homeostasis processes through sulfur and glutathione metabolism pathways, and hormone signal transduction, especially abscisic acid and ethylene, were enriched under water deficit stress. Thirty-four transcription factor families were identified, including members of AP2/ERF, NAC, MYB-related, C2H2, and bZIP families, and TFs in AP2/ERF family was the most abundant in petunia. Interestingly, only one member of GRFs was upregulated on day 1, while most of TFs were differentially expressed on day 3 and/or 5. The transcriptome data from this research will provide valuable molecular resources for understanding the early stages of water stress-responsive networks as well as engineering petunia with enhanced water stress tolerance.


Assuntos
Desidratação/genética , Regulação da Expressão Gênica de Plantas , Petunia/genética , RNA-Seq/métodos , Estresse Fisiológico/genética , Transcriptoma , Análise por Conglomerados , Regulação para Baixo , Ontologia Genética , Homeostase/genética , Petunia/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
4.
Plant Foods Hum Nutr ; 74(4): 449-460, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31522406

RESUMO

Selenium supplementation in humans has been suggested for the prevention of chronic diseases including cardiovascular disease, cancer, and neurodegenerative diseases. Selenium biofortification of plants has been explored as a method for increasing selenium content of food and dietary selenium intake in humans. However, the effects of selenium biofortification on other dietary nutrients is often a secondary discussion. These effects are especially important to explore considering selenium-biofortified foods contain many other nutrients important to human health, such as other minerals and antioxidant compounds, which can make these foods superior to selenium supplementation alone. Investigation of selenium biofortification's effect on these nutrients is necessary for a comprehensive human nutrition perspective on biofortification strategies. This review considers the effects of selenium biofortification on selenium content, other minerals, and antioxidant compounds as they pertain to human health in order to suggest optimal strategies for biofortification. Pre-clinical and clinical studies assessing the effects of consumption of selenium biofortified foods are also discussed.


Assuntos
Biofortificação , Selênio , Antioxidantes , Produtos Agrícolas , Alimentos Fortificados , Humanos , Nutrientes
5.
PLoS One ; 9(3): e91524, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24637565

RESUMO

Synechocystis sp. PCC6803 belongs to cyanobacteria which carry out photosynthesis and has recently become of interest due to the evolutionary link between bacteria and plant species. Similar to other bacteria, the primary carbohydrate storage source of Synechocystis sp. PCC6803 is glycogen. While most bacteria are not known to have any isoforms of glycogen synthase, analysis of the genomic DNA sequence of Synechocystis sp. PCC6803 predicts that this strain encodes two isoforms of glycogen synthase (GS) for synthesizing glycogen structure. To examine the functions of the putative GS genes, each gene (sll1393 or sll0945) was disrupted by double cross-over homologous recombination. Zymogram analysis of the two GS disruption mutants allowed the identification of a protein band corresponding to each GS isoform. Results showed that two GS isoforms (GSI and GSII) are present in Synechocystis sp. PCC6803, and both are involved in glycogen biosynthesis with different elongation properties: GSI is processive and GSII is distributive. Total GS activities in the mutant strains were not affected and were compensated by the remaining isoform. Analysis of the branch-structure of glycogen revealed that the sll1393- mutant (GSI-) produced glycogen containing more intermediate-length chains (DP 8-18) at the expense of shorter and longer chains compared with the wild-type strain. The sll0945- mutant (GSII-) produced glycogen similar to the wild-type, with only a slightly higher proportion of short chains (DP 4-11). The current study suggests that GS isoforms in Synechocystis sp. PCC6803 have different elongation specificities in the biosynthesis of glycogen, combined with ADP-glucose pyrophosphorylase and glycogen branching enzyme.


Assuntos
Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Glicogênio/biossíntese , Synechocystis/genética , Synechocystis/metabolismo , Ativação Enzimática , Deleção de Genes , Isoenzimas , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...