Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352544

RESUMO

Pathological high shear stress (HSS, 100 dyn/cm 2 ) is generated in distal pulmonary arteries (PA) (100-500 µm) in congenital heart defects and in progressive PA hypertension (PAH) with inward remodeling and luminal narrowing. Human PA endothelial cells (PAEC) were subjected to HSS versus physiologic laminar shear stress (LSS, 15 dyn/cm 2 ). Endothelial-mesenchymal transition (EndMT), a feature of PAH not previously attributed to HSS, was observed. H3K27ac peaks containing motifs for an ETS-family transcription factor (ERG) were reduced, as was ERG-Krüppel-like factors (KLF)2/4 interaction and ERG expression. Reducing ERG by siRNA in PAEC during LSS caused EndMT; transfection of ERG in PAEC under HSS prevented EndMT. An aorto-caval shunt was preformed in mice to induce HSS and progressive PAH. Elevated PA pressure, EndMT and vascular remodeling were reduced by an adeno-associated vector that selectively replenished ERG in PAEC. Agents maintaining ERG in PAEC should overcome the adverse effect of HSS on progressive PAH.

2.
Nat Commun ; 14(1): 7578, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989727

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive disease in which pulmonary arterial (PA) endothelial cell (EC) dysfunction is associated with unrepaired DNA damage. BMPR2 is the most common genetic cause of PAH. We report that human PAEC with reduced BMPR2 have persistent DNA damage in room air after hypoxia (reoxygenation), as do mice with EC-specific deletion of Bmpr2 (EC-Bmpr2-/-) and persistent pulmonary hypertension. Similar findings are observed in PAEC with loss of the DNA damage sensor ATM, and in mice with Atm deleted in EC (EC-Atm-/-). Gene expression analysis of EC-Atm-/- and EC-Bmpr2-/- lung EC reveals reduced Foxf1, a transcription factor with selectivity for lung EC. Reducing FOXF1 in control PAEC induces DNA damage and impaired angiogenesis whereas transfection of FOXF1 in PAH PAEC repairs DNA damage and restores angiogenesis. Lung EC targeted delivery of Foxf1 to reoxygenated EC-Bmpr2-/- mice repairs DNA damage, induces angiogenesis and reverses pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Artéria Pulmonar/metabolismo , Dano ao DNA , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
3.
Circ Res ; 132(5): 545-564, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36744494

RESUMO

OBJECTIVE: Mutations in BMPR2 (bone morphogenetic protein receptor 2) are associated with familial and sporadic pulmonary arterial hypertension (PAH). The functional and molecular link between loss of BMPR2 in pulmonary artery smooth muscle cells (PASMC) and PAH pathogenesis warrants further investigation, as most investigations focus on BMPR2 in pulmonary artery endothelial cells. Our goal was to determine whether and how decreased BMPR2 is related to the abnormal phenotype of PASMC in PAH. METHODS: SMC-specific Bmpr2-/- mice (BKOSMC) were created and compared to controls in room air, after 3 weeks of hypoxia as a second hit, and following 4 weeks of normoxic recovery. Echocardiography, right ventricular systolic pressure, and right ventricular hypertrophy were assessed as indices of pulmonary hypertension. Proliferation, contractility, gene and protein expression of PASMC from BKOSMC mice, human PASMC with BMPR2 reduced by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation were compared to controls, to investigate the phenotype and underlying mechanism. RESULTS: BKOSMC mice showed reduced hypoxia-induced vasoconstriction and persistent pulmonary hypertension following recovery from hypoxia, associated with sustained muscularization of distal pulmonary arteries. PASMC from mutant compared to control mice displayed reduced contractility at baseline and in response to angiotensin II, increased proliferation and apoptosis resistance. Human PASMC with reduced BMPR2 by small interference RNA, and PASMC from PAH patients with a BMPR2 mutation showed a similar phenotype related to upregulation of pERK1/2 (phosphorylated extracellular signal related kinase 1/2)-pP38-pSMAD2/3 mediating elevation in ARRB2 (ß-arrestin2), pAKT (phosphorylated protein kinase B) inactivation of GSK3-beta, CTNNB1 (ß-catenin) nuclear translocation and reduction in RHOA (Ras homolog family member A) and RAC1 (Ras-related C3 botulinum toxin substrate 1). Decreasing ARRB2 in PASMC with reduced BMPR2 restored normal signaling, reversed impaired contractility and attenuated heightened proliferation and in mice with inducible loss of BMPR2 in SMC, decreasing ARRB2 prevented persistent pulmonary hypertension. CONCLUSIONS: Agents that neutralize the elevated ARRB2 resulting from loss of BMPR2 in PASMC could prevent or reverse the aberrant hypocontractile and hyperproliferative phenotype of these cells in PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , beta-Arrestina 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , RNA/metabolismo
4.
Nat Commun ; 13(1): 4941, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999210

RESUMO

Physiologic laminar shear stress (LSS) induces an endothelial gene expression profile that is vasculo-protective. In this report, we delineate how LSS mediates changes in the epigenetic landscape to promote this beneficial response. We show that under LSS, KLF4 interacts with the SWI/SNF nucleosome remodeling complex to increase accessibility at enhancer sites that promote the expression of homeostatic endothelial genes. By combining molecular and computational approaches we discover enhancers that loop to promoters of KLF4- and LSS-responsive genes that stabilize endothelial cells and suppress inflammation, such as BMPR2, SMAD5, and DUSP5. By linking enhancers to genes that they regulate under physiologic LSS, our work establishes a foundation for interpreting how non-coding DNA variants in these regions might disrupt protective gene expression to influence vascular disease.


Assuntos
Cromatina , Células Endoteliais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Nucleossomos/genética , Sequências Reguladoras de Ácido Nucleico
5.
Am J Respir Crit Care Med ; 206(8): 1019-1034, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696338

RESUMO

Rationale: The role of neutrophils and their extracellular vesicles (EVs) in the pathogenesis of pulmonary arterial hypertension is unclear. Objectives: To relate functional abnormalities in pulmonary arterial hypertension neutrophils and their EVs to mechanisms uncovered by proteomic and transcriptomic profiling. Methods: Production of elastase, release of extracellular traps, adhesion, and migration were assessed in neutrophils from patients with pulmonary arterial hypertension and control subjects. Proteomic analyses were applied to explain functional perturbations, and transcriptomic data were used to find underlying mechanisms. CD66b-specific neutrophil EVs were isolated from plasma of patients with pulmonary arterial hypertension, and we determined whether they produce pulmonary hypertension in mice. Measurements and Main Results: Neutrophils from patients with pulmonary arterial hypertension produce and release increased neutrophil elastase, associated with enhanced extracellular traps. They exhibit reduced migration and increased adhesion attributed to elevated ß1-integrin and vinculin identified by proteomic analysis and previously linked to an antiviral response. This was substantiated by a transcriptomic IFN signature that we related to an increase in human endogenous retrovirus K envelope protein. Transfection of human endogenous retrovirus K envelope in a neutrophil cell line (HL-60) increases neutrophil elastase and IFN genes, whereas vinculin is increased by human endogenous retrovirus K deoxyuridine triphosphate diphosphatase that is elevated in patient plasma. Neutrophil EVs from patient plasma contain increased neutrophil elastase and human endogenous retrovirus K envelope and induce pulmonary hypertension in mice, mitigated by elafin, an elastase inhibitor. Conclusions: Elevated human endogenous retroviral elements and elastase link a neutrophil innate immune response to pulmonary arterial hypertension.


Assuntos
Retrovirus Endógenos , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Antivirais , Elafina/genética , Elafina/metabolismo , Elafina/farmacologia , Retrovirus Endógenos/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Humanos , Hipertensão Pulmonar/genética , Integrinas/genética , Integrinas/metabolismo , Elastase de Leucócito/metabolismo , Camundongos , Neutrófilos/metabolismo , Proteômica , Vinculina/genética , Vinculina/metabolismo
6.
Sci Rep ; 11(1): 17764, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493753

RESUMO

Endothelial-mesenchymal transition (EndMT) is a form of endothelial dysfunction wherein endothelial cells acquire a mesenchymal phenotype and lose endothelial functions, which contributes to the pathogenesis of intimal hyperplasia and atherosclerosis. The mitogen activated protein kinase 7 (MAPK7) inhibits EndMT and decreases the expression of the histone methyltransferase Enhancer-of-Zeste homologue 2 (EZH2), thereby maintaining endothelial quiescence. EZH2 is the catalytic subunit of the Polycomb Repressive Complex 2 that methylates lysine 27 on histone 3 (H3K27me3). It is elusive how the crosstalk between MAPK7 and EZH2 is regulated in the endothelium and if the balance between MAPK7 and EZH2 is disturbed in vascular disease. In human coronary artery disease, we assessed the expression levels of MAPK7 and EZH2 and found that with increasing intima/media thickness ratio, MAPK7 expression decreased, whereas EZH2 expression increased. In vitro, MAPK7 activation decreased EZH2 expression, whereas endothelial cells deficient of EZH2 had increased MAPK7 activity. MAPK7 activation results in increased expression of microRNA (miR)-101, a repressor of EZH2. This loss of EZH2 in turn results in the increased expression of the miR-200 family, culminating in decreased expression of the dual-specificity phosphatases 1 and 6 who may repress MAPK7 activity. Transfection of endothelial cells with miR-200 family members decreased the endothelial sensitivity to TGFß1-induced EndMT. In endothelial cells there is reciprocity between MAPK7 signaling and EZH2 expression and disturbances in this reciprocal signaling associate with the induction of EndMT and severity of human coronary artery disease.


Assuntos
Transdiferenciação Celular/fisiologia , Doença da Artéria Coronariana/patologia , Endotélio Vascular/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Mesoderma/patologia , Proteína Quinase 7 Ativada por Mitógeno/fisiologia , Transdução de Sinais/fisiologia , Túnica Íntima/patologia , Regiões 3' não Traduzidas/genética , Doença da Artéria Coronariana/enzimologia , Estenose Coronária/enzimologia , Estenose Coronária/patologia , Fosfatase 1 de Especificidade Dupla/biossíntese , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/biossíntese , Fosfatase 6 de Especificidade Dupla/genética , Endotélio Vascular/enzimologia , Ativação Enzimática , Regulação da Expressão Gênica , Genes Reporter , Código das Histonas , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperplasia , Mesoderma/enzimologia , MicroRNAs/biossíntese , MicroRNAs/genética , Túnica Média/patologia
7.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34185707

RESUMO

We previously reported heightened expression of the human endogenous retroviral protein HERV-K deoxyuridine triphosphate nucleotidohydrolase (dUTPase) in circulating monocytes and pulmonary arterial (PA) adventitial macrophages of patients with PA hypertension (PAH). Furthermore, recombinant HERV-K dUTPase increased IL-6 in PA endothelial cells (PAECs) and caused pulmonary hypertension in rats. Here we show that monocytes overexpressing HERV-K dUTPase, as opposed to GFP, can release HERV-K dUTPase in extracellular vesicles (EVs) that cause pulmonary hypertension in mice in association with endothelial mesenchymal transition (EndMT) related to induction of SNAIL/SLUG and proinflammatory molecules IL-6 as well as VCAM1. In PAECs, HERV-K dUTPase requires TLR4-myeloid differentiation primary response-88 to increase IL-6 and SNAIL/SLUG, and HERV-K dUTPase interaction with melanoma cell adhesion molecule (MCAM) is necessary to upregulate VCAM1. TLR4 engagement induces p-p38 activation of NF-κB in addition to p-pSMAD3 required for SNAIL and pSTAT1 for IL-6. HERV-K dUTPase interaction with MCAM also induces p-p38 activation of NF-κB in addition to pERK1/2-activating transcription factor-2 (ATF2) to increase VCAM1. Thus in PAH, monocytes or macrophages can release HERV-K dUTPase in EVs, and HERV-K dUTPase can engage dual receptors and signaling pathways to subvert PAEC transcriptional machinery to induce EndMT and associated proinflammatory molecules.


Assuntos
Retrovirus Endógenos , Transição Epitelial-Mesenquimal/imunologia , Hipertensão Pulmonar , Macrófagos/imunologia , Monócitos/imunologia , Artéria Pulmonar , Pirofosfatases/metabolismo , Animais , Antígeno CD146/metabolismo , Retrovirus Endógenos/metabolismo , Retrovirus Endógenos/patogenicidade , Células Endoteliais/metabolismo , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/virologia , Inflamação/metabolismo , Inflamação/virologia , Camundongos , Artéria Pulmonar/imunologia , Artéria Pulmonar/patologia , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo
8.
Circulation ; 143(21): 2074-2090, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764154

RESUMO

BACKGROUND: Metabolic alterations provide substrates that influence chromatin structure to regulate gene expression that determines cell function in health and disease. Heightened proliferation of smooth muscle cells (SMC) leading to the formation of a neointima is a feature of pulmonary arterial hypertension (PAH) and systemic vascular disease. Increased glycolysis is linked to the proliferative phenotype of these SMC. METHODS: RNA sequencing was applied to pulmonary arterial SMC (PASMC) from PAH patients with and without a BMPR2 (bone morphogenetic receptor 2) mutation versus control PASMC to uncover genes required for their heightened proliferation and glycolytic metabolism. Assessment of differentially expressed genes established metabolism as a major pathway, and the most highly upregulated metabolic gene in PAH PASMC was aldehyde dehydrogenase family 1 member 3 (ALDH1A3), an enzyme previously linked to glycolysis and proliferation in cancer cells and systemic vascular SMC. We determined if these functions are ALDH1A3-dependent in PAH PASMC, and if ALDH1A3 is required for the development of pulmonary hypertension in a transgenic mouse. Nuclear localization of ALDH1A3 in PAH PASMC led us to determine whether and how this enzyme coordinately regulates gene expression and metabolism in PAH PASMC. RESULTS: ALDH1A3 mRNA and protein were increased in PAH versus control PASMC, and ALDH1A3 was required for their highly proliferative and glycolytic properties. Mice with Aldh1a3 deleted in SMC did not develop hypoxia-induced pulmonary arterial muscularization or pulmonary hypertension. Nuclear ALDH1A3 converted acetaldehyde to acetate to produce acetyl coenzyme A to acetylate H3K27, marking active enhancers. This allowed for chromatin modification at NFYA (nuclear transcription factor Y subunit α) binding sites via the acetyltransferase KAT2B (lysine acetyltransferase 2B) and permitted NFY-mediated transcription of cell cycle and metabolic genes that is required for ALDH1A3-dependent proliferation and glycolysis. Loss of BMPR2 in PAH SMC with or without a mutation upregulated ALDH1A3, and transcription of NFYA and ALDH1A3 in PAH PASMC was ß-catenin dependent. CONCLUSIONS: Our studies have uncovered a metabolic-transcriptional axis explaining how dividing cells use ALDH1A3 to coordinate their energy needs with the epigenetic and transcriptional regulation of genes required for SMC proliferation. They suggest that selectively disrupting the pivotal role of ALDH1A3 in PAH SMC, but not endothelial cells, is an important therapeutic consideration.


Assuntos
Aldeído Oxirredutases/genética , Regulação da Expressão Gênica , Hipertensão Arterial Pulmonar/genética , Aldeído Oxirredutases/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/metabolismo , Músculo Liso/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
9.
Circ Res ; 128(3): 401-418, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33322916

RESUMO

RATIONALE: In pulmonary arterial hypertension (PAH), endothelial dysfunction and obliterative vascular disease are associated with DNA damage and impaired signaling of BMPR2 (bone morphogenetic protein type 2 receptor) via two downstream transcription factors, PPARγ (peroxisome proliferator-activated receptor gamma), and p53. OBJECTIVE: We investigated the vasculoprotective and regenerative potential of a newly identified PPARγ-p53 transcription factor complex in the pulmonary endothelium. METHODS AND RESULTS: In this study, we identified a pharmacologically inducible vasculoprotective mechanism in pulmonary arterial and lung MV (microvascular) endothelial cells in response to DNA damage and oxidant stress regulated in part by a BMPR2 dependent transcription factor complex between PPARγ and p53. Chromatin immunoprecipitation sequencing and RNA-sequencing established an inducible PPARγ-p53 mediated regenerative program regulating 19 genes involved in lung endothelial cell survival, angiogenesis and DNA repair including, EPHA2 (ephrin type-A receptor 2), FHL2 (four and a half LIM domains protein 2), JAG1 (jagged 1), SULF2 (extracellular sulfatase Sulf-2), and TIGAR (TP53-inducible glycolysis and apoptosis regulator). Expression of these genes was partially impaired when the PPARγ-p53 complex was pharmacologically disrupted or when BMPR2 was reduced in pulmonary artery endothelial cells (PAECs) subjected to oxidative stress. In endothelial cell-specific Bmpr2-knockout mice unable to stabilize p53 in endothelial cells under oxidative stress, Nutlin-3 rescued endothelial p53 and PPARγ-p53 complex formation and induced target genes, such as APLN (apelin) and JAG1, to regenerate pulmonary microvessels and reverse pulmonary hypertension. In PAECs from BMPR2 mutant PAH patients, pharmacological induction of p53 and PPARγ-p53 genes repaired damaged DNA utilizing genes from the nucleotide excision repair pathway without provoking PAEC apoptosis. CONCLUSIONS: We identified a novel therapeutic strategy that activates a vasculoprotective gene regulation program in PAECs downstream of dysfunctional BMPR2 to rehabilitate PAH PAECs, regenerate pulmonary microvessels, and reverse disease. Our studies pave the way for p53-based vasculoregenerative therapies for PAH by extending the therapeutic focus to PAEC dysfunction and to DNA damage associated with PAH progression.


Assuntos
Indutores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Imidazóis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , PPAR gama/metabolismo , Piperazinas/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Artéria Pulmonar/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo , PPAR gama/genética , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
10.
Cell Stem Cell ; 27(4): 574-589.e8, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810435

RESUMO

Hypoplastic left heart syndrome (HLHS) is a complex congenital heart disease characterized by abnormalities in the left ventricle, associated valves, and ascending aorta. Studies have shown intrinsic myocardial defects but do not sufficiently explain developmental defects in the endocardial-derived cardiac valve, septum, and vasculature. Here, we identify a developmentally impaired endocardial population in HLHS through single-cell RNA profiling of hiPSC-derived endocardium and human fetal heart tissue with an underdeveloped left ventricle. Intrinsic endocardial defects contribute to abnormal endothelial-to-mesenchymal transition, NOTCH signaling, and extracellular matrix organization, key factors in valve formation. Endocardial abnormalities cause reduced cardiomyocyte proliferation and maturation by disrupting fibronectin-integrin signaling, consistent with recently described de novo HLHS mutations associated with abnormal endocardial gene and fibronectin regulation. Together, these results reveal a critical role for endocardium in HLHS etiology and provide a rationale for considering endocardial function in regenerative strategies.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Células-Tronco Pluripotentes Induzidas , Endocárdio , Humanos , Miocárdio , Transdução de Sinais
11.
Sci Transl Med ; 12(554)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727916

RESUMO

Pulmonary arterial hypertension (PAH) in congenital cardiac shunts can be reversed by hemodynamic unloading (HU) through shunt closure. However, this reversibility potential is lost beyond a certain point in time. The reason why PAH becomes irreversible is unknown. In this study, we used MCT+shunt-induced PAH in rats to identify a dichotomous reversibility response to HU, similar to the human situation. We compared vascular profiles of reversible and irreversible PAH using RNA sequencing. Cumulatively, we report that loss of reversibility is associated with a switch from a proliferative to a senescent vascular phenotype and confirmed markers of senescence in human PAH-CHD tissue. In vitro, we showed that human pulmonary endothelial cells of patients with PAH are more vulnerable to senescence than controls in response to shear stress and confirmed that the senolytic ABT263 induces apoptosis in senescent, but not in normal, endothelial cells. To support the concept that vascular cell senescence is causal to the irreversible nature of end-stage PAH, we targeted senescence using ABT263 and induced reversal of the hemodynamic and structural changes associated with severe PAH refractory to HU. The factors that drive the transition from a reversible to irreversible pulmonary vascular phenotype could also explain the irreversible nature of other PAH etiologies and provide new leads for pharmacological reversal of end-stage PAH.


Assuntos
Cardiopatias Congênitas , Hipertensão Arterial Pulmonar , Animais , Senescência Celular , Células Endoteliais , Hipertensão Pulmonar Primária Familiar , Humanos , Ratos
12.
Sci Transl Med ; 12(554)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727917

RESUMO

Mutations in LMNA, the gene that encodes lamin A and C, causes LMNA-related dilated cardiomyopathy (DCM) or cardiolaminopathy. LMNA is expressed in endothelial cells (ECs); however, little is known about the EC-specific phenotype of LMNA-related DCM. Here, we studied a family affected by DCM due to a frameshift variant in LMNA Human induced pluripotent stem cell (iPSC)-derived ECs were generated from patients with LMNA-related DCM and phenotypically characterized. Patients with LMNA-related DCM exhibited clinical endothelial dysfunction, and their iPSC-ECs showed decreased functionality as seen by impaired angiogenesis and nitric oxide (NO) production. Moreover, genome-edited isogenic iPSC lines recapitulated the EC disease phenotype in which LMNA-corrected iPSC-ECs showed restoration of EC function. Simultaneous profiling of chromatin accessibility and gene expression dynamics by combining assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) as well as loss-of-function studies identified Krüppel-like factor 2 (KLF2) as a potential transcription factor responsible for the EC dysfunction. Gain-of-function studies showed that treatment of LMNA iPSC-ECs with KLF2 agonists, including lovastatin, rescued the EC dysfunction. Patients with LMNA-related DCM treated with lovastatin showed improvements in clinical endothelial dysfunction as indicated by increased reactive hyperemia index. Furthermore, iPSC-derived cardiomyocytes (iPSC-CMs) from patients exhibiting the DCM phenotype showed improvement in CM function when cocultured with iPSC-ECs and lovastatin. These results suggest that impaired cross-talk between ECs and CMs can contribute to the pathogenesis of LMNA-related DCM, and statin may be an effective therapy for vascular dysfunction in patients with cardiolaminopathy.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Cardiomiopatia Dilatada/tratamento farmacológico , Células Endoteliais , Humanos , Lamina Tipo A/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico
13.
J Pathol ; 247(4): 456-470, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565701

RESUMO

Endothelial-mesenchymal transition occurs during intimal hyperplasia and neointima formation via mechanisms that are incompletely understood. Endothelial MAPK7 signaling is a key mechanosensitive factor that protects against endothelial-mesenchymal transition, but its signaling activity is lost in vessel areas that are undergoing pathological remodeling. At sites of vascular remodeling in mice and pigs, endothelial MAPK7 signaling was lost. The TGFß-induced microRNA-374b targets MAPK7 and its downstream effectors in endothelial cells, and its expression induces endothelial-mesenchymal transition. Gain-of-function experiments, where endothelial MAPK7 signaling was restored, precluded endothelial-mesenchymal transition. In human coronary artery disease, disease severity is associated with decreased MAPK7 expression levels and increased miR-374b expression levels. Endothelial-mesenchymal transition occurs in intimal hyperplasia and early lesion formation and is governed in part by microRNA-374b-induced silencing of MAPK7 signaling. Restoration of MAPK7 signaling abrogated these pathological effects in endothelial cells expressing miR-374b. Thus, our data suggest that the TGFß-miR-374b-MAPK7 axis plays a key role in the induction of endothelial-mesenchymal transition during intimal hyperplasia and early lesion formation and might pose an interesting target for antiatherosclerosis therapy. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , MicroRNAs/fisiologia , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Animais , Doença da Artéria Coronariana/etiologia , Estenose Coronária/fisiopatologia , Vasos Coronários/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , Sus scrofa , Suínos , Túnica Íntima/metabolismo , Remodelação Vascular
14.
Circulation ; 136(20): 1920-1935, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28935667

RESUMO

BACKGROUND: Immune dysregulation has been linked to occlusive vascular remodeling in pulmonary arterial hypertension (PAH) that is hereditary, idiopathic, or associated with other conditions. Circulating autoantibodies, lung perivascular lymphoid tissue, and elevated cytokines have been related to PAH pathogenesis but without a clear understanding of how these abnormalities are initiated, perpetuated, and connected in the progression of disease. We therefore set out to identify specific target antigens in PAH lung immune complexes as a starting point toward resolving these issues to better inform future application of immunomodulatory therapies. METHODS: Lung immune complexes were isolated and PAH target antigens were identified by liquid chromatography tandem mass spectrometry, confirmed by enzyme-linked immunosorbent assay, and localized by confocal microscopy. One PAH antigen linked to immunity and inflammation was pursued and a link to PAH pathophysiology was investigated by next-generation sequencing, functional studies in cultured monocytes and endothelial cells, and hemodynamic and lung studies in a rat. RESULTS: SAM domain and HD domain-containing protein 1 (SAMHD1), an innate immune factor that suppresses HIV replication, was identified and confirmed as highly expressed in immune complexes from 16 hereditary and idiopathic PAH versus 12 control lungs. Elevated SAMHD1 was localized to endothelial cells, perivascular dendritic cells, and macrophages, and SAMHD1 antibodies were prevalent in tertiary lymphoid tissue. An unbiased screen using metagenomic sequencing related SAMHD1 to increased expression of human endogenous retrovirus K (HERV-K) in PAH versus control lungs (n=4). HERV-K envelope and deoxyuridine triphosphate nucleotidohydrolase mRNAs were elevated in PAH versus control lungs (n=10), and proteins were localized to macrophages. HERV-K deoxyuridine triphosphate nucleotidohydrolase induced SAMHD1 and proinflammatory cytokines (eg, interleukin 6, interleukin 1ß, and tumor necrosis factor α) in circulating monocytes, pulmonary arterial endothelial cells, and also activated B cells. Vulnerability of pulmonary arterial endothelial cells (PAEC) to apoptosis was increased by HERV-K deoxyuridine triphosphate nucleotidohydrolase in an interleukin 6-independent manner. Furthermore, 3 weekly injections of HERV-K deoxyuridine triphosphate nucleotidohydrolase induced hemodynamic and vascular changes of pulmonary hypertension in rats (n=8) and elevated interleukin 6. CONCLUSIONS: Our study reveals that upregulation of the endogenous retrovirus HERV-K could both initiate and sustain activation of the immune system and cause vascular changes associated with PAH.


Assuntos
Hipertensão Pulmonar/imunologia , Mediadores da Inflamação/imunologia , Regulação para Cima/fisiologia , Proteínas Virais/biossíntese , Proteínas Virais/imunologia , Adolescente , Adulto , Animais , Complexo Antígeno-Anticorpo/biossíntese , Complexo Antígeno-Anticorpo/imunologia , Células Cultivadas , Criança , Técnicas de Cocultura , Feminino , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Lactente , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Proteína 1 com Domínio SAM e Domínio HD/biossíntese , Proteína 1 com Domínio SAM e Domínio HD/imunologia , Adulto Jovem
15.
Circulation ; 133(18): 1783-94, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27045138

RESUMO

BACKGROUND: We previously reported high-throughput RNA sequencing analyses that identified heightened expression of the chromatin architectural factor High Mobility Group AT-hook 1 (HMGA1) in pulmonary arterial endothelial cells (PAECs) from patients who had idiopathic pulmonary arterial hypertension (PAH) in comparison with controls. Because HMGA1 promotes epithelial-to-mesenchymal transition in cancer, we hypothesized that increased HMGA1 could induce transition of PAECs to a smooth muscle (SM)-like mesenchymal phenotype (endothelial-to-mesenchymal transition), explaining both dysregulation of PAEC function and possible cellular contribution to the occlusive remodeling that characterizes advanced idiopathic PAH. METHODS AND RESULTS: We documented increased HMGA1 in PAECs cultured from idiopathic PAH versus donor control lungs. Confocal microscopy of lung explants localized the increase in HMGA1 consistently to pulmonary arterial endothelium, and identified many cells double-positive for HMGA1 and SM22α in occlusive and plexogenic lesions. Because decreased expression and function of bone morphogenetic protein receptor 2 (BMPR2) is observed in PAH, we reduced BMPR2 by small interfering RNA in control PAECs and documented an increase in HMGA1 protein. Consistent with transition of PAECs by HMGA1, we detected reduced platelet endothelial cell adhesion molecule 1 (CD31) and increased endothelial-to-mesenchymal transition markers, αSM actin, SM22α, calponin, phospho-vimentin, and Slug. The transition was associated with spindle SM-like morphology, and the increase in αSM actin was largely reversed by joint knockdown of BMPR2 and HMGA1 or Slug. Pulmonary endothelial cells from mice with endothelial cell-specific loss of Bmpr2 showed similar gene and protein changes. CONCLUSIONS: Increased HMGA1 in PAECs resulting from dysfunctional BMPR2 signaling can transition endothelium to SM-like cells associated with PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Transição Epitelial-Mesenquimal/fisiologia , Proteína HMGA1a/biossíntese , Hipertensão Pulmonar/metabolismo , Fatores de Transcrição da Família Snail/biossíntese , Adolescente , Adulto , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Células Cultivadas , Criança , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Proteína HMGA1a/genética , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Lactente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fatores de Transcrição da Família Snail/genética , Adulto Jovem
16.
Stem Cells Int ; 2016: 9762959, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904133

RESUMO

The endothelial lining of the vasculature is exposed to a large variety of biochemical and hemodynamic stimuli with different gradients throughout the vascular network. Adequate adaptation requires endothelial cells to be highly plastic, which is reflected by the remarkable heterogeneity of endothelial cells in tissues and organs. Hemodynamic forces such as fluid shear stress and cyclic strain are strong modulators of the endothelial phenotype and function. Although endothelial plasticity is essential during development and adult physiology, proatherogenic stimuli can induce adverse plasticity which contributes to disease. Endothelial-to-mesenchymal transition (EndMT), the hallmark of endothelial plasticity, was long thought to be restricted to embryonic development but has emerged as a pathologic process in a plethora of diseases. In this perspective we argue how shear stress and cyclic strain can modulate EndMT and discuss how this is reflected in atherosclerosis and pulmonary arterial hypertension.

17.
J Cell Sci ; 129(3): 569-79, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26729221

RESUMO

Endothelial-to-mesenchymal transition (EndMT) is characterized by the loss of endothelial cell markers and functions, and coincides with de novo expression of mesenchymal markers. EndMT is induced by TGFß1 and changes endothelial microRNA expression. We found that miR-20a is decreased during EndMT, and that ectopic expression of miR-20a inhibits EndMT induction. TGFß1 induces cellular hypertrophy in human umbilical vein endothelial cells and abrogates VE-cadherin expression, reduces endothelial sprouting capacity and induces the expression of the mesenchymal marker SM22α (also known as TAGLN). We identified ALK5 (also known as TGFBR1), TGFBR2 and SARA (also known as ZFYVE9) as direct miR-20a targets. Expression of miR-20a mimics abrogate the endothelial responsiveness to TGFß1, by decreasing ALK5, TGFBR2 and SARA, and inhibit EndMT, as indicated by the maintenance of VE-cadherin expression, the ability of the cells to sprout and the absence of SM22α expression. FGF2 increases miR-20a expression and inhibits EndMT in TGFß1-stimulated endothelial cells. In summary, FGF2 controls endothelial TGFß1 signaling by regulating ALK5, TGFBR2 and SARA expression through miR-20a. Loss of FGF2 signaling combined with a TGFß1 challenge reduces miR-20a levels and increases endothelial responsiveness to TGFß1 through elevated receptor complex levels and activation of Smad2 and Smad3, which culminates in EndMT.


Assuntos
Transdiferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Antígenos CD , Biomarcadores/metabolismo , Caderinas , Células Cultivadas , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia
18.
Cardiovasc Res ; 108(3): 377-86, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26084310

RESUMO

AIMS: Neointimal hyperplasia is a common feature of fibro-proliferative vascular disease and characterizes initial stages of atherosclerosis. Neointimal lesions mainly comprise smooth muscle-like cells. The presence of these lesions is related to local differences in shear stress. Neointimal cells may arise through migration and proliferation of smooth muscle cells from the media. However, a role for the endothelium as a source of smooth muscle-like cells has largely been disregarded. Here, we investigated the role of endothelial-to-mesenchymal transition (EndMT) in neointimal hyperplasia and atherogenesis, and studied its modulation by shear stress. METHODS AND RESULTS: In human atherosclerotic plaques and porcine aortic tissues, myo-endothelial cells were identified, suggestive for EndMT. Flow disturbance by thoracic-aortic constriction in mice similarly showed the presence of myo-endothelial cells specifically in regions exposed to disturbed flow. While uniform laminar shear stress (LSS) was found to inhibit EndMT, endothelial cells exposed to disturbed flow underwent EndMT, in vitro and in vivo, and showed atherogenic differentiation. Gain- and loss-of-function studies using a constitutive active mutant of MEK5 and short hairpins targeting ERK5 established a pivotal role for ERK5 signalling in the inhibition of EndMT. CONCLUSION: Together, these data suggest that EndMT contributes to neointimal hyperplasia and induces atherogenic differentiation of endothelial cells. Importantly, we uncovered that EndMT is modulated by shear stress in an ERK5-dependent manner. These findings provide new insights in the role of adverse endothelial plasticity in vascular disease and identify a novel atheroprotective mechanism of uniform LSS, namely inhibition of EndMT.


Assuntos
Doenças da Aorta/patologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/patologia , Proliferação de Células , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal , Mecanotransdução Celular , Placa Aterosclerótica , Remodelação Vascular , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/fisiopatologia , Artérias Carótidas/metabolismo , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrose , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Neointima , Interferência de RNA , Fluxo Sanguíneo Regional , Estresse Mecânico , Suínos , Fatores de Tempo , Transfecção
19.
Cardiovasc Res ; 105(1): 86-95, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25388666

RESUMO

AIMS: The MEK5/Erk5 pathway mediates beneficial effects of laminar flow, a major physiological factor preventing vascular dysfunction. Forced Erk5 activation induces a protective phenotype in endothelial cell (EC) that is associated with a dramatically decreased migration capacity of those cells. Transcriptional profiling identified the Krüppel-like transcription factors KLF2 and KLF4 as central mediators of Erk5-dependent gene expression. However, their downstream role regarding migration is unclear and relevant secondary effectors remain elusive. Here, we further investigated the mechanism underlying Erk5-dependent migration arrest in ECs. METHODS AND RESULTS: Our experiments reveal KLF2-dependent loss of the pro-migratory Rac/Cdc42 mediator, p21-activated kinase 1 (PAK1), as an important mechanism of Erk5-induced migration inhibition. We show that endothelial Erk5 activation by expression of a constitutively active MEK5 mutant, by statin treatment, or by application of laminar shear stress strongly decreased PAK1 mRNA and protein expression. Knockdown of KLF2 but not of KLF4 prevented Erk5-mediated PAK1 mRNA inhibition, revealing KLF2 as a novel PAK1 repressor in ECs. Importantly, both PAK1 re-expression and KLF2 knockdown restored the migration capacity of Erk5-activated ECs underscoring their functional relevance downstream of Erk5. CONCLUSION: Our data provide first evidence for existence of a previously unknown Erk5/KLF2/PAK1 axis, which may limit undesired cell migration in unperturbed endothelium and lower its sensitivity for migratory cues that promote vascular diseases including atherosclerosis.


Assuntos
Movimento Celular/fisiologia , Células Endoteliais/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Quinases Ativadas por p21/metabolismo , Aterosclerose/etiologia , Movimento Celular/genética , Regulação para Baixo , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/genética , Modelos Cardiovasculares , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Quinases Ativadas por p21/genética
20.
Intensive Care Med ; 39(7): 1262-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23563632

RESUMO

RATIONALE: Tie2 is predominantly expressed by endothelial cells and is involved in vascular integrity control during sepsis. Changes in Tie2 expression during sepsis development may contribute to microvascular dysfunction. Understanding the kinetics and molecular basis of these changes may assist in the development of therapeutic intervention to counteract microvascular dysfunction. OBJECTIVE: To investigate the molecular mechanisms underlying the changes in Tie2 expression upon lipopolysaccharide (LPS) challenge. METHODS AND RESULTS: Studies were performed in LPS and pro-inflammatory cytokine challenged mice as well as in mice subjected to hemorrhagic shock, primary endothelial cells were used for in vitro experiments in static and flow conditions. Eight hours after LPS challenge, Tie2 mRNA loss was observed in all major organs, while loss of Tie2 protein was predominantly observed in lungs and kidneys, in the capillaries. A similar loss could be induced by secondary cytokines TNF-α and IL-1ß. Ang2 protein administration did not affect Tie2 protein expression nor was Tie2 protein rescued in LPS-challenged Ang2-deficient mice, excluding a major role for Ang2 in Tie2 down regulation. In vitro, endothelial loss of Tie2 was observed upon lowering of shear stress, not upon LPS and TNF-α stimulation, suggesting that inflammation related haemodynamic changes play a major role in loss of Tie2 in vivo, as also hemorrhagic shock induced Tie2 mRNA loss. In vitro, this loss was partially counteracted by pre-incubation with a pharmacologically NF-кB inhibitor (BAY11-7082), an effect further substantiated in vivo by pre-treatment of mice with the NF-кB inhibitor prior to the inflammatory challenge. CONCLUSIONS: Microvascular bed specific loss of Tie2 mRNA and protein in vivo upon LPS, TNFα, IL-1ß challenge, as well as in response to hemorrhagic shock, is likely an indirect effect caused by a change in endothelial shear stress. This loss of Tie2 mRNA, but not Tie2 protein, induced by TNFα exposure was shown to be controlled by NF-кB signaling. Drugs aiming at restoring vascular integrity in sepsis could focus on preventing the Tie2 loss.


Assuntos
Endotélio Vascular/imunologia , Endotoxemia/imunologia , Receptor TIE-2/metabolismo , Choque Hemorrágico/imunologia , Animais , Permeabilidade Capilar/genética , Permeabilidade Capilar/imunologia , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Endotoxemia/genética , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Nitrilas/farmacologia , Pré-Medicação , RNA Mensageiro/metabolismo , Receptor TIE-2/genética , Choque Hemorrágico/genética , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...