Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047064

RESUMO

Online mass spectrometry techniques, such as extractive electrospray ionization mass spectrometry (EESI-MS), present an attractive alternative for analyzing aerosol molecular composition due to reduced aerosol sample collection and handling times and improved time resolution. Recent studies show a dependence of EESI-MS sensitivity on particle size and mixing state. This study measured authentic sea spray aerosol (SSA) components generated during a phytoplankton bloom, specifically glycerol, palmitic acid, and potassium ions. We demonstrate temporal variability and trends dependent on specific biological processes occurring in seawater. We found that the EESI-MS sensitivity, after adjusting for pressure variations at the inlet and normalizing to the reagent ion, critically depends on the sample's relative humidity. Relevant SSA species exhibited heightened sensitivity at an elevated relative humidity near the deliquescence relative humidity of sea salt and poorer sensitivity with sparse detection below the efflorescence relative humidity. Modeling the reagent ion's diffusive depth demonstrates that the sample aerosol particle viscosity governs the relative humidity dependence because it modulates the particle's coagulation efficiency and distance the reagent ion diffuses and reacts with components in the particle bulk. The effects of particle size and mixing state are discussed, revealing improved sensitivity of phase-separated components present along the particle surface. This work highlights the importance of the particle phase state in detecting and quantifying molecular components within authentic and complex aerosol particles and the utility of EESI-MS for measuring SSA composition.

2.
Environ Sci Process Impacts ; 24(2): 290-315, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35048927

RESUMO

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.


Assuntos
Atmosfera , Água do Mar , Aerossóis/química , Atmosfera/química , Oceanos e Mares , Fitoplâncton , Água do Mar/química
3.
Environ Sci Technol ; 55(23): 15705-15714, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34787411

RESUMO

Organic emissions from coastal waters play an important but poorly understood role in atmospheric chemistry in coastal regions. A mesocosm experiment focusing on facilitated biological blooms in coastal seawater, SeaSCAPE (Sea Spray Chemistry and Particle Evolution), was performed to study emission of volatile gases, primary sea spray aerosol, and formation of secondary marine aerosol as a function of ocean biological and chemical processes. Here, we report observations of aerosol-phase benzothiazoles in a marine atmospheric context with complementary measurements of dissolved-phase benzothiazoles. Though previously reported dissolved in polluted coastal waters, we report the first direct evidence of the transfer of these molecules from seawater into the atmosphere. We also report the first gas-phase observations of benzothiazole in the environment absent a direct industrial, urban, or rubber-based source. From the identities and temporal dynamics of the dissolved and aerosol species, we conclude that the presence of benzothiazoles in the coastal water (and thereby their emissions into the atmosphere) is primarily attributable to anthropogenic sources. Oxidation experiments to explore the atmospheric fate of gas-phase benzothiazole show that it produces secondary aerosol and gas-phase SO2, making it a potential contributor to secondary marine aerosol formation in coastal regions and a participant in atmospheric sulfur chemistry.


Assuntos
Partículas e Gotas Aerossolizadas , Atmosfera , Aerossóis , Atmosfera/análise , Benzotiazóis , Humanos , Água do Mar
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599100

RESUMO

Algae cultivation in open raceway ponds is considered the most economical method for photosynthetically producing biomass for biofuels, chemical feedstocks, and other high-value products. One of the primary challenges for open ponds is diminished biomass yields due to attack by grazers, competitors, and infectious organisms. Higher-frequency observations are needed for detection of grazer infections, which can rapidly reduce biomass levels. In this study, real-time measurements were performed using chemical ionization mass spectrometry (CIMS) to monitor the impact of grazer infections on cyanobacterial cultures. Numerous volatile gases were produced during healthy growth periods from freshwater Synechococcus elongatus Pasteur Culture Collection (PCC) 7942, with 6-methyl-5-hepten-2-one serving as a unique metabolic indicator of exponential growth. Following the introduction of a Tetrahymena ciliate grazer, the concentrations of multiple volatile species were observed to change after a latent period as short as 18 h. Nitrogenous gases, including ammonia and pyrroline, were found to be reliable indicators of grazing. Detection of grazing by CIMS showed indicators of infections much sooner than traditional methods, microscopy, and continuous fluorescence, which did not detect changes until 37 to 76 h after CIMS detection. CIMS analysis of gases produced by PCC 7942 further shows a complex temporal array of biomass-dependent volatile gas production, which demonstrates the potential for using volatile gas analysis as a diagnostic for grazer infections. Overall, these results show promise for the use of continuous volatile metabolite monitoring for the detection of grazing in algal monocultures, potentially reducing current grazing-induced biomass losses, which could save hundreds of millions of dollars.


Assuntos
Biocombustíveis/análise , Cianobactérias/química , Gases/química , Biomassa , Lagoas
5.
Environ Sci Technol ; 55(8): 5171-5179, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33755426

RESUMO

Biological aerosols, typically identified through their fluorescence properties, strongly influence clouds and climate. Sea spray aerosol (SSA) particles are a major source of biological aerosols, but detection in the atmosphere is challenging due to potential interference from other sources. Here, the fluorescence signature of isolated SSA, produced using laboratory-based aerosol generation methods, was analyzed and compared with two commonly used fluorescence techniques: excitation-emission matrix spectroscopy (EEMS) and the wideband integrated bioaerosol sensor (WIBS). A range of dynamic biological ocean scenarios were tested to compare EEMS and WIBS analyses of SSA. Both techniques revealed similar trends in SSA fluorescence intensity in response to changes in ocean microbiology, demonstrating the potential to use the WIBS to measure fluorescent aerosols alongside EEMS bulk solution measurements. Together, these instruments revealed a unique fluorescence signature of isolated, nascent SSA and, for the first time, a size-segregated emission of fluorescent species in SSA. Additionally, the fluorescence signature of aerosolized marine bacterial isolates was characterized and showed similar fluorescence peaks to those of SSA, suggesting that bacteria are a contributor to SSA fluorescence. Through investigation of isolated SSA, this study provides a reference for future identification of marine biological aerosols in a complex atmosphere.


Assuntos
Bactérias , Água do Mar , Aerossóis , Atmosfera , Análise Espectral
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33376210

RESUMO

Aerosols impact climate, human health, and the chemistry of the atmosphere, and aerosol pH plays a major role in the physicochemical properties of the aerosol. However, there remains uncertainty as to whether aerosols are acidic, neutral, or basic. In this research, we show that the pH of freshly emitted (nascent) sea spray aerosols is significantly lower than that of sea water (approximately four pH units, with pH being a log scale value) and that smaller aerosol particles below 1 µm in diameter have pH values that are even lower. These measurements of nascent sea spray aerosol pH, performed in a unique ocean-atmosphere facility, provide convincing data to show that acidification occurs "across the interface" within minutes, when aerosols formed from ocean surface waters become airborne. We also show there is a correlation between aerosol acidity and dissolved carbon dioxide but no correlation with marine biology within the seawater. We discuss the mechanisms and contributing factors to this acidity and its implications on atmospheric chemistry.


Assuntos
Aerossóis/química , Água do Mar/química , Ar , Atmosfera/química , Meio Ambiente , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Fitoplâncton , Água do Mar/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...