Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 116(4): 536-557, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38727560

RESUMO

The ascomycete fungus Aspergillus flavus infects and contaminates corn, peanuts, cottonseed, and tree nuts with toxic and carcinogenic aflatoxins. Subdivision between soil and host plant populations suggests that certain A. flavus strains are specialized to infect peanut, cotton, and corn despite having a broad host range. In this study, the ability of strains isolated from corn and/or soil in 11 Louisiana fields to produce conidia (field inoculum and male gamete) and sclerotia (resting bodies and female gamete) was assessed and compared with genotypic single-nucleotide polymorphism (SNP) differences between whole genomes. Corn strains produced upward of 47× more conidia than strains restricted to soil. Conversely, corn strains produced as much as 3000× fewer sclerotia than soil strains. Aspergillus flavus strains, typified by sclerotium diameter (small S-strains, <400 µm; large L-strains, >400 µm), belonged to separate clades. Several strains produced a mixture (M) of S and L sclerotia, and an intermediate number of conidia and sclerotia, compared with typical S-strains (minimal conidia, copious sclerotia) and L-strains (copious conidia, minimal sclerotia). They also belonged to a unique phylogenetic mixed (M) clade. Migration from soil to corn positively correlated with conidium production and negatively correlated with sclerotium production. Genetic differences correlated with differences in conidium and sclerotium production. Opposite skews in female (sclerotia) or male (conidia) gametic production by soil or corn strains, respectively, resulted in reduced effective breeding population sizes when comparing male:female gamete ratio with mating type distribution. Combining both soil and corn populations increased the effective breeding population, presumably due to contribution of male gametes from corn, which fertilize sclerotia on the soil surface. Incongruencies between aflatoxin clusters, strain morphotype designation, and whole genome phylogenies suggest a history of sexual reproduction within this Louisiana population, demonstrating the importance of conidium production, as infectious propagules and as fertilizers of the A. flavus soil population.


Assuntos
Aspergillus flavus , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Microbiologia do Solo , Esporos Fúngicos , Zea mays , Zea mays/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/classificação , Aspergillus flavus/metabolismo , Doenças das Plantas/microbiologia , Louisiana , Filogenia , Genótipo
2.
Mol Microbiol ; 121(5): 927-939, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38396382

RESUMO

Aspergillus flavus is an agriculturally significant micro-fungus having potential to contaminate food and feed crops with toxic secondary metabolites such as aflatoxin (AF) and cyclopiazonic acid (CPA). Research has shown A. flavus strains can overcome heterokaryon incompatibility and undergo meiotic recombination as teleomorphs. Although evidence of recombination in the AF gene cluster has been reported, the impacts of recombination on genotype and metabolomic phenotype in a single generation are lacking. In previous studies, we paired an aflatoxigenic MAT1-1 A. flavus strain with a non-aflatoxigenic MAT1-2 A. flavus strain that had been tagged with green fluorescent protein and then 10 F1 progenies (a mix of fluorescent and non-fluorescent) were randomly selected from single-ascospore colonies and broadly examined for evidence of recombination. In this study, we determined four of those 10 F1 progenies were recombinants because they were not vegetatively compatible with either parent or their siblings, and they exhibited other distinctive traits that could only result from meiotic recombination. The other six progenies examined shared genomic identity with the non-aflatoxigenic, fluorescent, and MAT1-2 parent, but were metabolically distinct. This study highlights phenotypic and genomic changes that may occur in a single generation from the outcrossing of sexually compatible strains of A. flavus.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/metabolismo , Aflatoxinas/genética , Genoma Fúngico/genética , Recombinação Genética , Genômica , Metabolômica , Genótipo , Fenótipo , Família Multigênica , Variação Genética , Indóis/metabolismo , Meiose/genética
3.
Front Microbiol ; 14: 1291284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029119

RESUMO

Background: Nearly everything on Earth harbors a microbiome. A microbiome is a community of microbes (bacteria, fungi, and viruses) with potential to form complex networks that involve mutualistic and antagonistic interactions. Resident microbiota on/in an organism are determined by the external environment, both biotic and abiotic, and the intrinsic adaptability of each organism. Although the maize microbiome has been characterized, community changes that result from the application of fungal biocontrol strains, such as non-aflatoxigenic Aspergillus flavus, have not. Methods: We silk channel inoculated field-grown maize separately with a non-aflatoxigenic biocontrol strain (K49), a highly toxigenic strain (Tox4), and a combination of both A. flavus strains. Two maize inbreds were treated, A. flavus-susceptible B73 and A. flavus-resistant CML322. We then assessed the impacts of A. flavus introduction on the epibiota and endobiota of their maize kernels. Results: We found that the native microbial communities were significantly affected, irrespective of genotype or sampled tissue. Overall, bacteriomes exhibited greater diversity of genera than mycobiomes. The abundance of certain genera was unchanged by treatment, including genera of bacteria (e.g., Enterobacter, Pantoea) and fungi (e.g., Sarocladium, Meyerozyma) that are known to be beneficial, antagonistic, or both on plant growth and health. Conclusion: Beneficial microbes like Sarocladium that responded well to A. flavus biocontrol strains are expected to enhance biocontrol efficacy, while also displacing/antagonizing harmful microbes.

4.
Toxins (Basel) ; 14(5)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35622587

RESUMO

Previously, authors reported that individual volatile organic compounds (VOCs) emitted by non-aflatoxigenic Aspergillus flavus could act as a mechanism of biocontrol to significantly reduce aflatoxins and cyclopiazonic acid (CPA) produced by toxigenic strains. In this study, various combinations and volumes of three mycotoxin-reductive VOCs (2,3-dihydrofuran, 3-octanone and decane) were assessed for their cumulative impacts on four Aspergillus strains (LA1-LA4), which were then analyzed for changes in growth, as well as the production of mycotoxins, including aflatoxins, CPA and multiple indole diterpenes. Fungal growth remained minimally inhibited when exposed to various combinations of VOCs. No single combination was able to consistently, or completely, inhibit aflatoxin or CPA across all toxigenic strains tested. However, the combination of 2,3-dihydrofuran and 3-octanone offered the greatest overall reductions in aflatoxin and CPA production. Despite no elimination of their production, findings showed that combining VOCs produced solely by non-aflatoxigenic A. flavus still inhibited several agriculturally important mycotoxins, including B and G aflatoxins and CPA. Therefore, other VOC combinations are worth testing as post-harvest biocontrol treatments to ensure the prolonged effectiveness of pre-harvest biocontrol efforts.


Assuntos
Aflatoxinas , Micotoxinas , Compostos Orgânicos Voláteis , Aspergillus , Aspergillus flavus , Micotoxinas/toxicidade , Temefós , Compostos Orgânicos Voláteis/farmacologia
5.
Data Brief ; 42: 108033, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35330736

RESUMO

Information on the transcriptomic changes that occur within sclerotia of Aspergillus flavus during its sexual cycle is very limited and warrants further research. The findings will broaden our knowledge of the biology of A. flavus and can provide valuable insights in the development or deployment of non-toxigenic strains as biocontrol agents against aflatoxigenic strains. This article presents transcriptomic datasets included in our research article entitled, "Development of sexual structures influences metabolomic and transcriptomic profiles in Aspergillus flavus" [1], which utilized transcriptomics to identify possible genes and gene clusters associated with sexual reproduction and fertilization in A. flavus. RNA was extracted from sclerotia of a high fertility cross (Hi-Fert-Mated), a low fertility cross (Lo-Fert-Mated), and unmated strains (Hi-Fert-Unmated and Lo-Fert-Unmated) of A. flavus collected immediately after crossing and at every two weeks until eight weeks of incubation on mixed cereal agar at 30 °C in continuous darkness (n = 4 replicates from each treatment for each time point; 80 total). Raw sequencing reads obtained on an Illumina NovaSeq 6000 were deposited in NCBI's Sequence Read Archive (SRA) repository under BioProject accession number PRJNA789260. Reads were mapped to the A. flavus NRRL 3357 genome (assembly JCVI-afl1-v2.0; GCA_000006275.2) using STAR software. Differential gene expression analyses, functional analyses, and weighted gene co-expression network analysis were performed using DESeq2 R packages. The raw and analyzed data presented in this article could be reused for comparisons with other datasets to obtain transcriptional differences among strains of A. flavus or closely related species. The data can also be used for further investigation of the molecular basis of different processes involved in sexual reproduction and sclerotia fertility in A. flavus.

6.
Fungal Biol ; 126(3): 187-200, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35183336

RESUMO

Sclerotium (female) fertility, the ability of a strain to produce ascocarps, influences internal morphological changes during sexual reproduction in Aspergillus flavus. Although sclerotial morphogenesis has been linked to secondary metabolite (SM) biosynthesis, metabolic and transcriptomic changes within A. flavus sclerotia during sexual development are not known. Successful mating between compatible strains may result in relatively high or low numbers of ascocarps being produced. Sclerotia from a high fertility cross (Hi-Fert-Mated), a low fertility cross (Lo-Fert-Mated), unmated strains (Hi-Fert-Unmated and Lo-Fert-Unmated) were harvested immediately after crosses were made and every two weeks until 8 weeks of incubation, then subjected to targeted metabolomics (n = 106) and transcriptomics analyses (n = 80). Aflatoxin B1 production varied between Hi-Fert-Mated and Hi-Fert-Unmated sclerotia, while it remained low or was undetected in Lo-Fert-Mated and Lo-Fert-Unmated sclerotia. Profiling of 14 SMs showed elevated production of an aflavazole analog, an aflavinine isomer, and hydroxyaflavinine in Hi-Fert-Mated sclerotia at 4 to 8 weeks. Similarly, genes ayg1, hxtA, MAT1, asd-3, preA and preB, and genes in uncharacterized SM gene clusters 30 and 44 showed increased expression in Hi-Fert-Mated sclerotia at these time points. These results broaden our knowledge of the biochemical and transcriptional processes during sexual development in A. flavus.


Assuntos
Aflatoxinas , Aspergillus flavus , Aflatoxinas/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Reprodução/genética , Transcriptoma
7.
Nat Microbiol ; 7(2): 238-250, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087227

RESUMO

Despite recent progress in our understanding of the association between the gut microbiome and colorectal cancer (CRC), multi-kingdom gut microbiome dysbiosis in CRC across cohorts is unexplored. We investigated four-kingdom microbiota alterations using CRC metagenomic datasets of 1,368 samples from 8 distinct geographical cohorts. Integrated analysis identified 20 archaeal, 27 bacterial, 20 fungal and 21 viral species for each single-kingdom diagnostic model. However, our data revealed superior diagnostic accuracy for models constructed with multi-kingdom markers, in particular the addition of fungal species. Specifically, 16 multi-kingdom markers including 11 bacterial, 4 fungal and 1 archaeal feature, achieved good performance in diagnosing patients with CRC (area under the receiver operating characteristic curve (AUROC) = 0.83) and maintained accuracy across 3 independent cohorts. Coabundance analysis of the ecological network revealed associations between bacterial and fungal species, such as Talaromyces islandicus and Clostridium saccharobutylicum. Using metagenome shotgun sequencing data, the predictive power of the microbial functional potential was explored and elevated D-amino acid metabolism and butanoate metabolism were observed in CRC. Interestingly, the diagnostic model based on functional EggNOG genes achieved high accuracy (AUROC = 0.86). Collectively, our findings uncovered CRC-associated microbiota common across cohorts and demonstrate the applicability of multi-kingdom and functional markers as CRC diagnostic tools and, potentially, as therapeutic targets for the treatment of CRC.


Assuntos
Bactérias/genética , Neoplasias Colorretais/diagnóstico , Fungos/genética , Microbioma Gastrointestinal/genética , Metagenoma , Interações Microbianas/genética , Adulto , Idoso , Bactérias/classificação , Bactérias/metabolismo , Biomarcadores/análise , Estudos de Coortes , Neoplasias Colorretais/classificação , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Fungos/classificação , Fungos/metabolismo , Humanos , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Análise de Sequência de DNA , Vírus/classificação , Vírus/genética
8.
Crit Rev Food Sci Nutr ; 62(15): 4208-4225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33506687

RESUMO

There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.


Assuntos
Aflatoxinas , Micotoxinas , Aspergillus flavus/genética , Fungos
9.
Toxins (Basel) ; 13(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34822579

RESUMO

Aflatoxin is a carcinogenic mycotoxin produced by Aspergillus flavus. Non-aflatoxigenic (Non-tox) A. flavus isolates are deployed in corn fields as biocontrol because they substantially reduce aflatoxin contamination via direct replacement and additionally via direct contact or touch with toxigenic (Tox) isolates and secretion of inhibitory/degradative chemicals. To understand touch inhibition, HPLC analysis and RNA sequencing examined aflatoxin production and gene expression of Non-tox isolate 17 and Tox isolate 53 mono-cultures and during their interaction in co-culture. Aflatoxin production was reduced by 99.7% in 72 h co-cultures. Fewer than expected unique reads were assigned to Tox 53 during co-culture, indicating its growth and/or gene expression was inhibited in response to Non-tox 17. Predicted secreted proteins and genes involved in oxidation/reduction were enriched in Non-tox 17 and co-cultures compared to Tox 53. Five secondary metabolite (SM) gene clusters and kojic acid synthesis genes were upregulated in Non-tox 17 compared to Tox 53 and a few were further upregulated in co-cultures in response to touch. These results suggest Non-tox strains can inhibit growth and aflatoxin gene cluster expression in Tox strains through touch. Additionally, upregulation of other SM genes and redox genes during the biocontrol interaction demonstrates a potential role of inhibitory SMs and antioxidants as additional biocontrol mechanisms and deserves further exploration to improve biocontrol formulations.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Genes Fúngicos , Família Multigênica , Aspergillus flavus/química , Técnicas de Cocultura
10.
Microbiol Resour Announc ; 9(38)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943568

RESUMO

Aspergillus flavus is a common saprophyte and opportunistic fungal pathogen that infects plants, animals, and humans. It also produces numerous toxic and nontoxic secondary metabolites. Here, we report the draft genome sequences of 20 A. flavus isolates, belonging to 16 vegetative compatibility groups, from Louisiana corn kernels and cornfield soils.

11.
Mycologia ; 112(5): 908-920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821029

RESUMO

Aspergillus flavus contaminates agricultural products worldwide with carcinogenic aflatoxins that pose a serious health risk to humans and animals. The fungus survives adverse environmental conditions through production of sclerotia. When fertilized by a compatible conidium of an opposite mating type, a sclerotium transforms into a stroma within which ascocarps, asci, and ascospores are formed. However, the transition from a sclerotium to a stroma during sexual reproduction in A. flavus is not well understood. Early events during the interaction between sexually compatible strains of A. flavus were visualized using conidia of a green fluorescent protein (GFP)-labeled MAT1-1 strain and sclerotia of an mCherry-labeled MAT1-2 strain. Both conidia and sclerotia of transformed strains germinated to produce hyphae within 24 h of incubation. Hyphal growth of these two strains produced what appeared to be a network of interlocking hyphal strands that were observed at the base of the mCherry-labeled sclerotia (i.e., region in contact with agar surface) after 72 h of incubation. At 5 wk following incubation, intracellular green-fluorescent hyphal strands were observed within the stromatal matrix of the mCherry-labeled strain. Scanning electron microscopy of stromata from a high- and low-fertility cross and unmated sclerotia was used to visualize the formation and development of sexual structures within the stromatal and sclerotial matrices, starting at the time of crossing and thereafter every 2 wk until 8 wk of incubation. Morphological differences between sclerotia and stromata became apparent at 4 wk of incubation. Internal hyphae and croziers were detected inside multiple ascocarps that developed within the stromatal matrix of the high-fertility cross but were not detected in the matrix of the low-fertility cross or the unmated sclerotia. At 6 to 8 wk of incubation, hyphal tips produced numerous asci, each containing one to eight ascospores that emerged out of an ascus following the breakdown of the ascus wall. These observations broaden our knowledge of early events during sexual reproduction and suggest that hyphae from the conidium-producing strain may be involved in the early stages of sexual reproduction in A. flavus. When combined with omics data, these findings could be useful in further exploration of the molecular and biochemical mechanisms underlying sexual reproduction in A. flavus.


Assuntos
Aspergillus flavus/citologia , Aspergillus flavus/crescimento & desenvolvimento , Carpóforos/citologia , Carpóforos/crescimento & desenvolvimento , Reprodução/fisiologia , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Aspergillus flavus/genética , Fertilidade , Contaminação de Alimentos , Carpóforos/genética , Variação Genética , Genótipo , Humanos , Micotoxinas , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Reprodução/genética , Esporos Fúngicos/genética
12.
Front Microbiol ; 10: 667, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024476

RESUMO

Aspergillus flavus is one of the most important mycotoxigenic species from the genus Aspergillus, due to its ability to synthesize the potent hepatocarcinogen, aflatoxin B1. Moreover, this fungus is capable of producing several other toxic metabolites from the class of indole-tetramates, non-ribosomal peptides, and indole-diterpenoids. Populations of A. flavus are characterized by considerable diversity in terms of morphological, functional and genetic features. Although for many years A. flavus was considered an asexual fungus, researchers have shown evidence that at best these fungi can exhibit a predominantly asexual existence. We now know that A. flavus contains functional genes for mating, uncovering sexuality as potential contributor for its diversification. Based on our results, we reconfirm that A. flavus is a predominant producer of B-type aflatoxins. Moreover, this fungus can decisively produce AFM1 and AFM2. We did not observe any clear relationship between mating-type genes and particular class of metabolites, probably other parameters such as sexual/asexual ratio should be investigated. A dynamic secondary metabolism was found also in strains intended to be used as biocontrol agents. In addition we succeeded to provide mass spectrometry fragmentation spectra for the most important classes of A. flavus metabolites, which will serve as identification cards for future studies. Both, metabolic and phylogenetic analysis proved a high intra-species diversity for A. flavus. These findings contribute to our understanding about the diversity of Aspergillus section Flavi species, raising the necessity for polyphasic approaches (morphological, metabolic, genetic, etc.) when dealing with this type of complex group of species.

13.
Plant Dis ; 103(5): 804-807, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864941

RESUMO

Powdery mildews (PMs) are important plant pathogens causing widespread damage. Here, we report the first draft genome of Erysiphe pulchra, the causative agent of PM of flowering dogwood, Cornus florida. The assembled genome was 63.5 Mbp and resulted in formation of 19,442 contigs (N50 = 11,686 bp) that contained an estimated 6,860 genes with a genome coverage of 62×. We found 102 candidate secreted effector proteins (CSEPs) in E. pulchra similar to E. necator genes that are potentially involved in disease development. This draft genome is an initial step for understanding the evolutionary history of the PMs and will also provide insight into evolutionary strategies that led to the wide host expansion and environmental adaptations so effectively employed by the PM lineages.


Assuntos
Ascomicetos , Genoma Fúngico , Ascomicetos/genética , Genômica/tendências , Doenças das Plantas/microbiologia
14.
PLoS One ; 13(7): e0199169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29966003

RESUMO

Aspergillus flavus is a saprophytic fungus that infects corn, peanuts, tree nuts and other agriculturally important crops. Once the crop is infected the fungus has the potential to secrete one or more mycotoxins, the most carcinogenic of which is aflatoxin. Aflatoxin contaminated crops are deemed unfit for human or animal consumption, which results in both food and economic losses. Within A. flavus, two morphotypes exist: the S strains (small sclerotia) and L strains (large sclerotia). Significant morphological and physiological differences exist between the two morphotypes. For example, the S-morphotypes produces sclerotia that are smaller (< 400 µm), greater in quantity, and contain higher concentrations of aflatoxin than the L-morphotypes (>400 µm). The morphotypes also differ in pigmentation, pH homeostasis in culture and the number of spores produced. Here we report the first full genome sequence of an A. flavus S morphotype, strain AF70. We provide a comprehensive comparison of the A. flavus S-morphotype genome sequence with a previously sequenced genome of an L-morphotype strain (NRRL 3357), including an in-depth analysis of secondary metabolic clusters and the identification SNPs within their aflatoxin gene clusters.


Assuntos
Aspergillus flavus/genética , Genoma Fúngico/genética , Doenças das Plantas/genética , Esporos Fúngicos/genética , Aflatoxinas/genética , Aflatoxinas/toxicidade , Arachis/microbiologia , Aspergillus flavus/classificação , Aspergillus flavus/patogenicidade , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Nozes/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/patogenicidade , Zea mays/microbiologia
15.
BMC Genomics ; 19(1): 189, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523080

RESUMO

BACKGROUND: Aspergillus arachidicola is an aflatoxigenic fungal species, first isolated from the leaves of a wild peanut species native to Argentina. It has since been reported in maize, Brazil nut and human sputum samples. This aflatoxigenic species is capable of secreting both B and G aflatoxins, similar to A. parasiticus and A. nomius. It has other characteristics that may result in its misidentification as one of several other section Flavi species. This study offers a preliminary analysis of the A. arachidicola genome. RESULTS: In this study we sequenced the genome of the A. arachidicola type strain (CBS 117610) and found its genome size to be 38.9 Mb, and its number of predicted genes to be 12,091, which are values comparable to those in other sequenced Aspergilli. A comparison of 57 known Aspergillus secondary metabolite gene clusters, among closely-related aflatoxigenic species, revealed nearly half were predicted to exist in the type strain of A. arachidicola. Of its predicted genes, 691 were identified as unique to the species and 60% were assigned Gene Ontology terms using BLAST2GO. Phylogenomic inference shows CBS 117610 sharing a most recent common ancestor with A. parasiticus. Finally, BLAST query of A. flavus mating-type idiomorph sequences to this strain revealed the presence of a single mating-type (MAT1-1) idiomorph. CONCLUSIONS: Based on A. arachidicola morphological, genetic and chemotype similarities with A. flavus and A. parasiticus, sequencing the genome of A. arachidicola will contribute to our understanding of the evolutionary relatedness among aflatoxigenic fungi.


Assuntos
Aflatoxinas/metabolismo , Aspergillus/genética , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Arachis/microbiologia , Aspergillus/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia
16.
Ecol Evol ; 7(21): 9179-9191, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29152206

RESUMO

Aflatoxins produced by several species in Aspergillus section Flavi are a significant problem in agriculture and a continuous threat to human health. To provide insights into the biology and global population structure of species in section Flavi, a total of 1,304 isolates were sampled across six species (A. flavus, A. parasiticus, A. nomius, A. caelatus, A. tamarii, and A. alliaceus) from single fields in major peanut-growing regions in Georgia (USA), Australia, Argentina, India, and Benin (Africa). We inferred maximum-likelihood phylogenies for six loci, both combined and separately, including two aflatoxin cluster regions (aflM/alfN and aflW/aflX) and four noncluster regions (amdS, trpC, mfs and MAT), to examine population structure and history. We also employed principal component and STRUCTURE analysis to identify genetic clusters and their associations with six different categories (geography, species, precipitation, temperature, aflatoxin chemotype profile, and mating type). Overall, seven distinct genetic clusters were inferred, some of which were more strongly structured by G chemotype diversity than geography. Populations of A. flavus S in Benin were genetically distinct from all other section Flavi species for the loci examined, which suggests genetic isolation. Evidence of trans-speciation within two noncluster regions, whereby A. flavus SBG strains from Australia share haplotypes with either A. flavus or A. parasiticus, was observed. Finally, while clay soil and precipitation may influence species richness in Aspergillus section Flavi, other region-specific environmental and genetic parameters must also be considered.

17.
Toxins (Basel) ; 9(11)2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088078

RESUMO

Several strains of a new aflatoxigenic species of Aspergillus, A. korhogoensis, were isolated in the course of a screening study involving species from section Flavi found contaminating peanuts (Arachis hypogaea) and peanut paste in the Côte d'Ivoire. Based on examination of four isolates, this new species is described using a polyphasic approach. A concatenated alignment comprised of nine genes (ITS, benA, cmdA, mcm7, amdS, rpb1, preB, ppgA, and preA) was subjected to phylogenetic analysis, and resulted in all four strains being inferred as a distinct clade. Characterization of mating type for each strain revealed A. korhogoensis as a heterothallic species, since three isolates exhibited a singular MAT1-1 locus and one isolate exhibited a singular MAT1-2 locus. Morphological and physiological characterizations were also performed based on their growth on various types of media. Their respective extrolite profiles were characterized using LC/HRMS, and showed that this new species is capable of producing B- and G-aflatoxins, aspergillic acid, cyclopiazonic acid, aflavarins, and asparasones, as well as other metabolites. Altogether, our results confirm the monophyly of A. korhogoensis, and strengthen its position in the A. flavus clade, as the sister taxon of A. parvisclerotigenus.


Assuntos
Aflatoxinas/metabolismo , Aspergillus , Sequência de Aminoácidos , Arachis/microbiologia , Aspergillus/citologia , Aspergillus/genética , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Côte d'Ivoire , Contaminação de Alimentos/análise , Genes Fúngicos , Filogenia , Metabolismo Secundário
18.
Fungal Genet Biol ; 106: 42-50, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28690095

RESUMO

Fungal secondary metabolites have many important biological roles and some, like the toxic polyketide aflatoxin, have been intensively studied at the genetic level. Complete sets of polyketide synthase (PKS) genes can now be identified in fungal pathogens by whole genome sequencing and studied in order to predict the biosynthetic potential of those fungi. The pine needle pathogen Dothistroma septosporum is predicted to have only three functional PKS genes, a small number for a hemibiotrophic fungus. One of these genes is required for production of dothistromin, a polyketide virulence factor related to aflatoxin, whose biosynthetic genes are dispersed across one chromosome rather than being clustered. Here we evaluated the evolution of the other two genes, and their predicted gene clusters, using phylogenetic and population analyses. DsPks1 and its gene cluster are quite conserved amongst related fungi, whilst DsPks2 appears to be novel. The DsPks1 protein was predicted to be required for dihydroxynaphthalene (DHN) melanin biosynthesis but functional analysis of DsPks1 mutants showed that D. septosporum produced mainly dihydroxyphenylalanine (DOPA) melanin, which is produced by a PKS-independent pathway. Although the secondary metabolites made by these two PKS genes are not known, comparisons between strains of D. septosporum from different regions of the world revealed that both PKS core genes are under negative selection and we suggest they may have important cryptic roles in planta.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/genética , Di-Hidroxifenilalanina/análogos & derivados , Evolução Molecular , Policetídeo Sintases/genética , Policetídeos/metabolismo , Metabolismo Secundário/genética , Ascomicetos/classificação , Di-Hidroxifenilalanina/genética , Di-Hidroxifenilalanina/metabolismo , Florestas , Melaninas/biossíntese , Melaninas/genética , Família Multigênica , Naftóis , Filogenia , Pinus/microbiologia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
19.
Toxins (Basel) ; 9(1)2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28098779

RESUMO

Cyclopiazonic acid (α-cyclopiazonic acid, α-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures approximately 40 years ago, its contribution to the A. flavus mycotoxin burden is consistently minimized by our focus on the more potent carcinogenic aflatoxins also produced by this fungus. Here, we report the screening and identification of several CPA-type alkaloids not previously found in A. flavus cultures. Our identifications of these CPA-type alkaloids are based on a dereplication strategy involving accurate mass high resolution mass spectrometry data and a careful study of the α-CPA fragmentation pattern. In total, 22 CPA-type alkaloids were identified in extracts from the A. flavus strains examined. Of these metabolites, 13 have been previously reported in other fungi, though this is the first report of their existence in A. flavus. Two of our metabolite discoveries, 11,12-dehydro α-CPA and 3-hydroxy-2-oxo CPA, have never been reported for any organism. The conspicuous presence of CPA and its numerous derivatives in A. flavus cultures raises concerns about the long-term and cumulative toxicological effects of these fungal secondary metabolites and their contributions to the entire A. flavus mycotoxin problem.


Assuntos
Alcaloides/isolamento & purificação , Aspergillus flavus/metabolismo , Indóis/isolamento & purificação , Micotoxinas/isolamento & purificação , Neurotoxinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Espectrometria de Massas em Tandem
20.
Genome Biol Evol ; 8(11): 3297-3300, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27664179

RESUMO

Aspergillus bombycis was first isolated from silkworm frass in Japan. It has been reportedly misidentified as A. nomius due to their macro-morphological and chemotype similarities. We sequenced the genome of the A. bombycis Type strain and found it to be comparable in size (37 Mb), as well as in numbers of predicted genes (12,266), to other sequenced Aspergilli. The aflatoxin gene cluster in this strain is similar in size and the genes are oriented the same as other B- + G-aflatoxin producing species, and this strain contains a complete but nonfunctional gene cluster for the production of cyclopiazonic acid. Our findings also showed that the A. bombycis Type strain contains a single MAT1-2 gene indicating that this species is likely heterothallic (self-infertile). This draft genome will contribute to our understanding of the genes and pathways necessary for aflatoxin synthesis as well as the evolutionary relationships of aflatoxigenic fungi.


Assuntos
Aflatoxinas/genética , Aspergillus/genética , Genoma Fúngico , Aspergillus/classificação , Aspergillus/metabolismo , Evolução Molecular , Genes Fúngicos Tipo Acasalamento , Indóis/metabolismo , Anotação de Sequência Molecular , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...