Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 23(1): 221, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36031619

RESUMO

BACKGROUND: Mid-Regional pro-Adrenomedullin (MR-proADM) is an inflammatory biomarker that improves the prognostic assessment of patients with sepsis, septic shock and organ failure. Previous studies of MR-proADM have primarily focussed on bacterial infections. A limited number of small and monocentric studies have examined MR-proADM as a prognostic factor in patients infected with SARS-CoV-2, however there is need for multicenter validation. An evaluation of its utility in predicting need for hospitalisation in viral infections was also performed. METHODS: An observational retrospective analysis of 1861 patients, with SARS-CoV-2 confirmed by RT-qPCR, from 10 hospitals across Europe was performed. Biomarkers, taken upon presentation to Emergency Departments (ED), clinical scores, patient demographics and outcomes were collected. Multiclass random forest classifier models were generated as well as calculation of area under the curve analysis. The primary endpoint was hospital admission with and without death. RESULTS: Patients suitable for safe discharge from Emergency Departments could be identified through an MR-proADM value of ≤ 1.02 nmol/L in combination with a CRP (C-Reactive Protein) of ≤ 20.2 mg/L and age ≤ 64, or in combination with a SOFA (Sequential Organ Failure Assessment) score < 2 if MR-proADM was ≤ 0.83 nmol/L regardless of age. Those at an increased risk of mortality could be identified upon presentation to secondary care with an MR-proADM value of > 0.85 nmol/L, in combination with a SOFA score ≥ 2 and LDH > 720 U/L, or in combination with a CRP > 29.26 mg/L and age ≤ 64, when MR-proADM was > 1.02 nmol/L. CONCLUSIONS: This international study suggests that for patients presenting to the ED with confirmed SARS-CoV-2 infection, MR-proADM in combination with age and CRP or with the patient's SOFA score could identify patients at low risk where outpatient treatment may be safe.


Assuntos
Adrenomedulina , COVID-19 , Hospitalização , Adrenomedulina/análise , Biomarcadores , Proteína C-Reativa , COVID-19/mortalidade , Mortalidade Hospitalar , Humanos , Prognóstico , Precursores de Proteínas , Estudos Retrospectivos , SARS-CoV-2
2.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138976

RESUMO

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Vírus da Hepatite Murina/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Sistemas de Liberação de Medicamentos , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , RNA-Seq , Células Vero , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...