Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17271, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613240

RESUMO

Ecological and evolutionary theories have proposed that species traits should be important in mediating species responses to contemporary climate change; yet, empirical evidence has so far provided mixed evidence for the role of behavioral, life history, or ecological characteristics in facilitating or hindering species range shifts. As such, the utility of trait-based approaches to predict species redistribution under climate change has been called into question. We develop the perspective, supported by evidence, that trait variation, if used carefully can have high potential utility, but that past analyses have in many cases failed to identify an explanatory value for traits by not fully embracing the complexity of species range shifts. First, we discuss the relevant theory linking species traits to range shift processes at the leading (expansion) and trailing (contraction) edges of species distributions and highlight the need to clarify the mechanistic basis of trait-based approaches. Second, we provide a brief overview of range shift-trait studies and identify new opportunities for trait integration that consider range-specific processes and intraspecific variability. Third, we explore the circumstances under which environmental and biotic context dependencies are likely to affect our ability to identify the contribution of species traits to range shift processes. Finally, we propose that revealing the role of traits in shaping species redistribution may likely require accounting for methodological variation arising from the range shift estimation process as well as addressing existing functional, geographical, and phylogenetic biases. We provide a series of considerations for more effectively integrating traits as well as extrinsic and methodological factors into species redistribution research. Together, these analytical approaches promise stronger mechanistic and predictive understanding that can help society mitigate and adapt to the effects of climate change on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Filogenia , Geografia , Fenótipo
2.
Ecol Lett ; 27(3): e14395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467468

RESUMO

The publish-or-perish culture in academia has catalysed the development of an unethical publishing system. This system is characterised by the proliferation of journals and publishers-unaffiliated with learned societies or universities-that maintain extremely large revenues and profit margins diverting funds away from the academic community. Early career researchers (ECRs) are particularly vulnerable to the consequences of this publishing system because of intersecting factors, including pressure to pursue high impact publications, rising publication costs and job insecurity. Moving towards a more ethical system requires that scientists advocate for structural change by making career choices that come with risks, many of which disproportionately impact ECRs. We illuminate major issues facing ECRs in Ecology and Evolution under the current publishing system, and propose a portfolio of actions to promote systemic change that can be implemented by ECRs and established researchers.


Assuntos
Editoração
3.
Nat Ecol Evol ; 7(12): 1993-2003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932384

RESUMO

Understanding how temperature determines the distribution of life is necessary to assess species' sensitivities to contemporary climate change. Here, we test the importance of temperature in limiting the geographic ranges of ectotherms by comparing the temperatures and areas that species occupy to the temperatures and areas species could potentially occupy on the basis of their physiological thermal tolerances. We find that marine species across all latitudes and terrestrial species from the tropics occupy temperatures that closely match their thermal tolerances. However, terrestrial species from temperate and polar latitudes are absent from warm, thermally tolerable areas that they could potentially occupy beyond their equatorward range limits, indicating that extreme temperature is often not the factor limiting their distributions at lower latitudes. This matches predictions from the hypothesis that adaptation to cold environments that facilitates survival in temperate and polar regions is associated with a performance trade-off that reduces species' abilities to contend in the tropics, possibly due to biotic exclusion. Our findings predict more direct responses to climate warming of marine ranges and cool range edges of terrestrial species.


Assuntos
Mudança Climática , Temperatura Baixa , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...