Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(1): 101989, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36602903

RESUMO

Defects in myofibroblast function may cause wound healing defects in a variety of tissue types. Here we describe a simple skin-punch biopsy approach to screen mouse models for defects in wound closure that does not require extensive surgical training or expensive equipment. Experimental results may serve as an initial proof of concept to determine whether further investigation is necessary or if defects in myofibroblast function observed in other systems also result in reduced skin wound healing.


Assuntos
Pele , Cicatrização , Camundongos , Animais , Pele/diagnóstico por imagem , Pele/patologia , Biópsia , Modelos Animais de Doenças
2.
Front Physiol ; 14: 1304669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283278

RESUMO

The endoplasmic reticulum (ER) is a tightly regulated organelle that requires specific environmental properties to efficiently carry out its function as a major site of protein synthesis and folding. Embedded in the ER membrane, ER stress sensors inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) serve as a sensitive quality control system collectively known as the unfolded protein response (UPR). In response to an accumulation of misfolded proteins, the UPR signals for protective mechanisms to cope with the cellular stress. Under prolonged unstable conditions and an inability to regain homeostasis, the UPR can shift from its original adaptive response to mechanisms leading to UPR-induced apoptosis. These UPR signaling pathways have been implicated as an important feature in the development of cardiac fibrosis, but identifying effective treatments has been difficult. Therefore, the apoptotic mechanisms of UPR signaling in cardiac fibroblasts (CFs) are important to our understanding of chronic fibrosis in the heart. Here, we summarize the maladaptive side of the UPR, activated downstream pathways associated with cell death, and agents that have been used to modify UPR-induced apoptosis in CFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...